UW Math Circle

April 21, 2016
Remember modular arithmetic: we say that a and b are congruent modulo n and we write $a \equiv b(\bmod n)$ if a and b have the same remainder when you divide then by n, or if n divides $a-b$ with remainder 0 .

1. Say what the following numbers are congruent to modulo n.
(a) $15 \equiv ?(\bmod 4)$
(b) $15+7 \equiv ?(\bmod 5)$
(c) $2^{3} \equiv ?(\bmod 3)$
(d) $3^{4} \equiv ?(\bmod 5)$
2. Solve the following equations for x modulo n, or show that there aren't any solutions.
(a) $2 x \equiv 1(\bmod 3)$
(b) $2 x \equiv 1(\bmod 20)$
(c) $5 x \equiv 3(\bmod 15)$
(d) $4 x \equiv 5(\bmod 20)$
(e) $17 x \equiv 1 \bmod 19$.
3. For what a does the equation $a x \equiv 1(\bmod n)$ have a solution when n is equal to $3,4,5,6,30$?
4. The greatest common divisor of 3 and 5 is 1 - and 1 is the greatest common divisor of 3 and $5-3=2$. The greatest common divisor of 15 and 70 is 5 . We also see that 5 is the greatest common divisor of 15 and $70-15=55$.
Prove that if d is the greatest common divisor of a and b and a isn't equal to b, then d is the greatest common divisor of a and $b-a$.
5. Devise a procedure (and prove that it is correct) to find the greatest common divisor of a and b, and to Hint: Consider the following example involving 21 and 33.

- $33=21(1)+12$
- $21=12(1)+9$
- $12=9(1)+3$
- $9=3(3)+0$
- The greatest common divisor of 33 and 12 is 3 .

6. Use your answer to the previous problem to write $a x+b y=d$, where x, y are integers and d is the greatest common divisor of a and b.
7. Find the greatest common divisor of 1071 and 462.
8. Devise a criteria for saying when the equation $a x \equiv 1(\bmod n)$ has a solution, and show that it is correct. You might use induction to show that it is correct.
