UW Math Circle (Cardinality)

1 Definitions

A set function, $f: S \rightarrow T$, is a rule that given an element of the set S, outputs an element in the set T. A set function is injective if whenever $f(x)=f(y)$ then $x=y$. A set function is surjective if for every element t of T there exists an element s of S so that $f(s)=t$. A set function is bijective if it is both surjective and injective.

1. Give an example of a set that is

- injective but not surjective;
- surjective but not injective;
- bijective;
- neither injective nor surjective.

2. Here is another definition for a bijective set function: The function $f: S \rightarrow T$ is bijective if there exists another function $g: T \rightarrow S$ such that $f(g(t))=t$ for all t in T and $g(f(s))=s$ for all s in S. Prove that this definition agrees with the one given above.

We say that two sets have the same size if there exists a bijection between them. We will use $|S|$ to denote the size of the set S. If there is an injection $f: S \rightarrow T$ then we say that $|S| \leq|T|$. If there is a surjection $f: S \rightarrow T$ we say that $|S| \geq|T|$.

2 Bijections

1. Find a bijection between the set of points on a circle and the set of points on a line.
2. Find a bijection between the the intervals $(0, \infty)$ and $(0,1)$.

3 . Is there a bijection between $(0,1)$ and $(0,1]$?

3 Power sets

The power set of a set S is the set of all subsets of S.
What is the power set of the set $S=\{a, b, c\}$? How many elements does it have? What about $T=\{0,1,2,3\}$

4 Higher Cardinalities

Give an example of a set that people actually use elements of, that has cardinality greater than the real numbers.

5 Loose ends

If there exists an injection $f: S \rightarrow T$ and another injection g :

