1 Definitions

A set function, $f: S \to T$, is a rule that given an element of the set S, outputs an element in the set T. A set function is *injective* if whenever f(x) = f(y) then x = y. A set function is *surjective* if for every element t of T there exists an element s of S so that f(s) = t. A set function is *bijective* if it is both surjective and injective.

- 1. Give an example of a set that is
 - injective but not surjective;
 - surjective but not injective;
 - bijective;
 - neither injective nor surjective.
- 2. Here is another definition for a bijective set function: The function $f: S \to T$ is bijective if there exists another function $g: T \to S$ such that f(g(t)) = t for all t in T and g(f(s)) = s for all s in S. Prove that this definition agrees with the one given above.

We say that two sets have the same *size* if there exists a bijection between them. We will use |S| to denote the size of the set S. If there is an injection $f: S \to T$ then we say that $|S| \leq |T|$. If there is a surjection $f: S \to T$ we say that $|S| \geq |T|$.

2 Bijections

- 1. Find a bijection between the set of points on a circle and the set of points on a line.
- 2. Find a bijection between the the intervals $(0, \infty)$ and (0, 1).
- 3. Is there a bijection between (0,1) and (0,1]?

3 Power sets

The *power set* of a set S is the set of all subsets of S.

What is the power set of the set $S = \{a, b, c\}$? How many elements does it have? What about $T = \{0, 1, 2, 3\}$

4 Higher Cardinalities

Give an example of a set that people actually use elements of, that has cardinality greater than the real numbers.

5 Loose ends

If there exists an injection $f: S \to T$ and another injection g: