UW Math Circle

Homework

1. If a taxicab can only drive north and east, in how many ways can the cab drive:
(a) 1 block north and 2 blocks east?
(b) 1 block north and 3 blocks east?
(c) 1 block north and 4 blocks east?
(d) 1 block north and n blocks east?
(e) 2 blocks north and 2 blocks east?
(f) 2 blocks north and 3 blocks east?
(g) 2 blocks north and 4 blocks east?
(h) 2 blocks north and n blocks east?
(i) m blocks north and 1 block east?
(j) m blocks north and 2 blocks east?
(k) m blocks north and 3 blocks east?
(l) m blocks north and n blocks east? Can you answer this question without using any algebra?

2. Prove the following identities without using algebraic manipulations.
(a) $\binom{n}{5}=\binom{n}{n-5}$
(b) $\binom{n}{5}=\binom{n-1}{5}+\binom{n-1}{4}$
(c) $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$
(d) $3\binom{n}{3}=n\binom{n-1}{2}$
(e) $k\binom{n}{k}=n\binom{n-1}{k-1}$
(f) $\binom{8}{3}=\binom{2}{2}+\binom{3}{2}+\binom{4}{2}+\binom{5}{2}+\binom{6}{2}+\binom{7}{2}$
(g) $\binom{2}{2}+\binom{3}{2}+\binom{4}{2}+\cdots+\binom{n}{2}=\binom{n+1}{3}$
(How does this compare to $1+2+\cdots+n=\frac{n(n+1)}{2}$?)
(h) What do you think $\binom{k}{k}+\binom{k+1}{k}+\binom{k+2}{k}+\cdots+\binom{n}{k}$ should equal?
