Let's introduce some different symbols, so we can talk about all groups at once! Instead of saying "consider the group of integers" or "think about the symmetries of a pentagon", we'll say "consider the group G ": this means that " G " is a placeholder that might mean any group you like.

When G is an arbitrary group like this, we usually use the letter " e " to mean the identity element, and letters like " g ", " h ", " a ", " b " and " c " to mean arbitrary elements. Instead of saying "combine g and h ", we can write " $g * h$ ": the "*" is another placeholder, that might mean " + " or " \times " or ". . . then do this mattress flip..." or whatever the group combining operation is.

In this language, the definition of a group is:

- a set G and an operation $*$, so that
- there's an identity element e in G such that $e * g=g$ and $g * e=g$ for any element g in G,
- every g in G has an inverse element, written g^{-1}, so that $g * g^{-1}=e$ and $g^{-1} * g=e$, and
- the operation $*$ is associative, which we can finally explain: it means that $(a * b) * c=a *(b * c)$ for any a, b and c (where the parentheses mean "do the thing inside the parentheses first"). ${ }^{1}$

Problem 0. A group G can only ever have one identity element. Why?

Problem 1. Every element g in G has only one inverse. Why?

Problem 2. Suppose that $g * h=e$. Explain why $h * g$ must also equal e, so h must be g^{-1}.

[^0]Problem 3. Sometimes the order of group elements matters, and sometimes it doesn't. Explain why the following statement is true: $a * b$ and $b * a$ are equal if and only if $a * b * a^{-1} * b^{-1}=e$.

Problem 4. If g is any element of G, the set

$$
\begin{aligned}
& \langle g\rangle=\{e, g, g * g, g * g * g, g * g * g * g, \ldots, \\
& \left.g^{-1}, g^{-1} * g^{-1}, g^{-1} * g^{-1} * g^{-1}, \ldots\right\}
\end{aligned}
$$

is a subgroup of G.
Remember, to check if a set S is a subgroup of G, you need to check:

- If you multiply two things in S, you get something else in S.
- The identity element is in S.
- Everything in S has an inverse in S.

Problem 5. Assume that G is a finite set. Explain why $g * g * \cdots * g=g^{-1}$ for some number of g 's.

Problem 6. Suppose H is a subgroup of G and g is any element of G. Let $g H g^{-1}$ be the set of things you can write as $g * h * g^{-1}$ for some h in H. Explain why $g H^{-1}$ is a subgroup of G.

Problem 7. Remember that a group is called "cyclic" if it can be generated by one element. Explain why $a * b=b * a$ for every a and b in a cyclic group.

Problem 8. Explain why every finite group can be found as a subgroup of the group of permutations of n things, for some n.

[^0]: ${ }^{1}$ Associativity means we can write things like " $g_{1} * g_{2} * g_{3} * g_{4} * \ldots$ " without parentheses, since it doesn't matter what order we do the *'s in. Can you think of an operation that isn't associative?

