- The last digit of a number is the same as the remainder when you divide the number by 10 .
- The remainder when you divide by 2 is 1 if the number is odd and 0 if it's even.
- A number is divisible by 3 whenever the remainder when you divide by 3 is 0 .

If two numbers a and b have the same remainder when you divide them by q, then we say that " a and b are congruent modulo q ", written " $a \equiv b \bmod q$ ". For example, 36 is congruent to 86 modulo 10 , since 36 and 86 both have the same remainder (namely 6) when you divide them by 10 . Here are some more examples:

$$
\begin{array}{ll}
12 \equiv 5 \quad \bmod 7, & 124 \equiv 54 \quad \bmod 10 \\
38 \equiv 0 \quad \bmod 2, & 100 \equiv 898 \quad \bmod 3
\end{array}
$$

Question 1. True or false:
(a) $843643538 \equiv 5345636 \bmod 10$
(d) $843643538 \equiv 5345636 \bmod 3$
(b) $843643538 \equiv 5345636 \bmod 2$
(e) $843643538 \equiv 5345636 \bmod 9$
(c) $843643538 \equiv 5345636 \bmod 5$
(f) $843643538 \equiv 5345636 \bmod 57$

Question 2. Suppose that when you divide a by q, the remainder is r, and when you divide b by q the remainder is s. Are the following equations true? Try to explain why they're true, if you can, or find some numbers for a, b and q that break things.
(a) $a+b \equiv r+s \bmod q$. (For example, $10004+10003 \equiv 4+3 \bmod 10$.)
(b) $a \times b \equiv r \times s \bmod q$
(c) $a^{b} \equiv r^{s} \bmod q$

In question 2, you should have figured out that

$$
a+b \equiv r+s \quad \bmod q
$$

where r and s are the remainders of a and b when you divide by q. This means that if you want to find the remainder of $a+b$ when you divide by q, you don't actually need to add a and b : you can take the remainders of a and b first, then just add the remainders together. This is useful if a and b are very big numbers, for example.
Question 3. What is the remainder when you:
(a) ... divide $3256+1982$ by 10 ?
(b) \ldots divide $(703+356+79+3)$ by 7 ?
(c) ... divide $(7846217+439878142+87437632)$ by $100 ?$
(d) \ldots divide $(3614+3614+3614+3614+3614)$ by $36 ?$
(e) \ldots divide (2802×5) by 14 ?
(f) \ldots divide (6793×6) by 8 ?
(g) ... divide (197×197) by $196 ?$

