$\sqrt{2}$ is irrational!

We want to explain why $\sqrt{2}$ is an irrational number (that is, it isn't a fraction). Let's do this by imagining that $\sqrt{2}$ is rational, and seeing that this leads us to problems.

If $\sqrt{2}$ is rational, we can write it as a fraction:

$$
\sqrt{2}=\frac{p}{q}
$$

If p and q have a common factor, we can cancel it - for example, $\frac{5}{10}$ is the same as $\frac{1}{2}$ after we divide on top and bottom by 5 - so let's also assume that p and q have no common factors. Now, we'll get rid of the $\sqrt{ }$ by squaring everything:

$$
(\sqrt{2})^{2}=\left(\frac{p}{q}\right)^{2}
$$

so

$$
2=\frac{p^{2}}{q^{2}}
$$

and then let's multiply both sides by q^{2} :

$$
2 q^{2}=p^{2}
$$

Problem 1. I claim that this means p must be an even number. Why?

Since p is even, it must be 2 times some other number: that is, $p=2 r$ for some r. Plugging this into our equation, we get:

$$
\begin{aligned}
2 q^{2} & =(2 r)^{2} \\
& =2^{2} r^{2} \\
& =4 r^{2}
\end{aligned}
$$

And now let's divide both sides of the equation by 2 :

$$
q^{2}=2 r^{2}
$$

Problem 2. What does this tell us about q ?

Problem 3. Finish this explanation off by explaining why this is impossible.

Problem 4. Can you explain why $\sqrt{3}$ is irrational? What about $\sqrt{4}$?

