Modular Arithmagic

Jacob Richey and Carl de Marcken
University of Washington 2nd year Math Circle

4/2/2020

Modular arithmetic

Let's think about the world of numbers mod n, for some positive integer n. For integers a, b, we say " a and b are equivalent mod n " if

$$
n \text { divides } a-b
$$

It's also the same as saying a and b leave the same remainder when divided by n. This is what we mean by

$$
a \equiv b \quad \bmod n
$$

For example, $10 \equiv-3 \equiv 49 \equiv 13000010 \bmod 13$.

Modular arithmetic

There are n different 'equivalence classes' mod n : for example, equivalence class of $0 \bmod 3$ is

$$
[0]=\{0,3,-3,6,-6,9,-9, \ldots\}
$$

The equivalence class of -1 is

$$
[-1]=\{-1,-4,-7,2,5,8, \ldots\}
$$

The equivalence class of 2 is

$$
[2]=\{2,5,8,-1,-4,-7, \ldots\}
$$

Note that $[-1]=[2]$, since -1 and 2 differ by a multiple of 3 .
We often drop the brackets and just write $0,1, \ldots, n-1$ for the equivalence classes.

Modular operations

We can do addition and multiplication with numbers mod n, and equivalence still works. For example, multiplying by 2 on both sides (leaving the mod unchanged):

$$
10 \equiv-3 \bmod 13, \Longrightarrow 20 \equiv-6 \bmod 13
$$

Powers work too:

$$
10 \equiv-3 \bmod 13 \Longrightarrow 10^{2}=100=7 * 13+9 \equiv 9=(-3)^{2} \bmod 13
$$

Modular operations

Dividing and taking roots doesn't always do what you expect. For example, dividing by 2 would give

$$
6 \equiv 2 \bmod 4 \Longrightarrow 3 \equiv 1 \bmod 4
$$

which is false! With powers, weird things can happen:

$$
1^{2} \equiv 3^{2} \equiv 5^{2} \equiv 7^{2} \equiv 1 \quad \bmod 8
$$

So there are four 'square roots of 1 ' $\bmod 8: 1,3,5$, and 7.

Multiplication

Mod 8 multiplication table

Slight of hand

Q: What is $17^{2021} \bmod 12 ?$

Slight of hand

Q: What is $17^{2021} \bmod 12 ?$
A: Use modular arithmagic! A clever observation:

$$
17^{2} \equiv
$$

Slight of hand

Q: What is $17^{2021} \bmod 12 ?$
A: Use modular arithmagic! A clever observation:

$$
17^{2} \equiv(-5)^{2}=25 \equiv 1 \quad \bmod 12
$$

Thus,

$$
17^{2021}=17^{2020} \cdot 17 \equiv\left(17^{2}\right)^{1010} \cdot 17 \equiv 1^{1010}=17 \equiv 5 \quad \bmod 12
$$

Slight of hand

Now you try: find

$$
3^{100} \bmod 7
$$

Slight of hand

Now you try: find

$$
3^{100} \bmod 7
$$

One way: note $3^{3}=27 \equiv-1 \bmod 7$. So

$$
3^{99} \equiv(-1)^{33}=-1 \quad \bmod 7
$$

Thus $3^{100} \equiv-1 \cdot 3 \equiv 4 \bmod 7$.

Divisibility testing

An easy way to find any number mod 3 is to add the digits: the sum is the same mod 3 as the original number.
$1234 \rightarrow$ digit sum $=10 \equiv 1 \bmod 3$, and $1234=3 \cdot 411+1 \equiv 1 \bmod 3$.

Divisibility testing

An easy way to find any number mod 3 is to add the digits: the sum is the same mod 3 as the original number.
$1234 \rightarrow$ digit sum $=10 \equiv 1 \bmod 3$,
and $1234=3 \cdot 411+1 \equiv 1 \bmod 3$.
Why does this work?

Divisibility testing

An easy way to find any number mod 3 is to add the digits: the sum is the same mod 3 as the original number.

$$
1234 \rightarrow \text { digit sum }=10 \equiv 1 \bmod 3
$$

and $1234=3 \cdot 411+1 \equiv 1 \bmod 3$.
Why does this work? Note $1 \equiv 10 \bmod 3$, so

$$
1 \equiv 10 \equiv 100 \equiv 1000 \equiv \cdots \quad \bmod 3
$$

So for any number $x=1000 a+100 b+10 c+d$,

$$
\begin{aligned}
1000 a+100 b+10 c+d & \equiv 1 a+1 b+1 c+1 d \bmod 3 \\
& =a+b+c+d \bmod 3
\end{aligned}
$$

Divisibility testing

Another number that has nice properties with respect to powers of 10 is $11: 10 \equiv-1 \bmod 11$, so

$$
10^{n} \equiv(-1)^{n} \quad \bmod 11
$$

Divisibility testing

Another number that has nice properties with respect to powers of 10 is 11: $10 \equiv-1 \bmod 11$, so

$$
10^{n} \equiv(-1)^{n} \quad \bmod 11
$$

So, to find $x=1000 a+100 b+10 c+d$ mod 11, do the alternating digit sum:

$$
x \equiv d-c+b-a \bmod 11
$$

For example, $1852 \equiv 2-5+8-1=4 \bmod 11$.

Division

When is it OK to divide?

Division

When is it OK to divide?

It's OK to divide mod n by any number x such that $\operatorname{gcd}(n, x)=1$, i.e. if x and n are relatively prime.

Division

When is it OK to divide?
It's OK to divide $\bmod n$ by any number x such that $\operatorname{gcd}(n, x)=1$, i.e. if x and n are relatively prime. For example, dividing by $3 \bmod 4$:

$$
6 \equiv 2 \bmod 4 \Longrightarrow 2 \equiv \frac{2}{3} \quad \bmod 4
$$

What does $2 / 3 \bmod 4$ mean?

Division

When is it OK to divide?
It's OK to divide $\bmod n$ by any number x such that $\operatorname{gcd}(n, x)=1$, i.e. if x and n are relatively prime. For example, dividing by $3 \bmod 4$:

$$
6 \equiv 2 \bmod 4 \Longrightarrow 2 \equiv \frac{2}{3} \bmod 4
$$

What does $2 / 3 \bmod 4$ mean? It means $2 \cdot 3^{-1}$, where 3^{-1} is the number such that $3 \cdot 3^{-1} \equiv 1 \bmod 4$.

Division

When is it OK to divide?
It's OK to divide $\bmod n$ by any number x such that $\operatorname{gcd}(n, x)=1$, i.e. if x and n are relatively prime. For example, dividing by $3 \bmod 4$:

$$
6 \equiv 2 \bmod 4 \Longrightarrow 2 \equiv \frac{2}{3} \quad \bmod 4
$$

What does $2 / 3 \bmod 4$ mean? It means $2 \cdot 3^{-1}$, where 3^{-1} is the number such that $3 \cdot 3^{-1} \equiv 1 \bmod 4$.

We have $3^{-1} \equiv 3 \bmod 4$, since $3 \cdot 3=9 \equiv 1 \bmod 4$. So

$$
2 / 3 \equiv 2 \cdot 3 \equiv 6 \equiv 2
$$

Inverses

How to find inverses?

Inverses

How to find inverses? Use the Euclidean algorithm!

Inverses

How to find inverses? Use the Euclidean algorithm!
The Euclidean algorithm outputs the gcd of two integers a and b. Example with $a=43$ and $b=17$:

Inverses

How to find inverses? Use the Euclidean algorithm!
The Euclidean algorithm outputs the gcd of two integers a and b. Example with $a=43$ and $b=17$:

$$
\begin{aligned}
& 43=2 \cdot 17+9 \\
& 17=1 \cdot 9+8 \\
& 9=1 \cdot 8+1 \\
& 8=8 \cdot 1
\end{aligned}
$$

The final number (when there was no remainder) was 1 , so $\operatorname{gcd}(43,17)=1$.

Inverses

The Euclidean algorithm gets us half way there. The other half is:

Theorem (Bezout)

For any integers a and b, there exist x and y such that

$$
a x+b y=\operatorname{gcd}(a, b)
$$

For example, if $a=43$ and $b=17$,

Inverses

The Euclidean algorithm gets us half way there. The other half is:

Theorem (Bezout)

For any integers a and b, there exist x and y such that

$$
a x+b y=\operatorname{gcd}(a, b)
$$

For example, if $a=43$ and $b=17$,
Why is this helpful? If we could find the x and y, and $\operatorname{gcd}(a, b)=1$, we would get

$$
a x=-b y+1, \text { or } a x \equiv 1 \bmod b
$$

Inverses

The Euclidean algorithm gets us half way there. The other half is:

Theorem (Bezout)

For any integers a and b, there exist x and y such that

$$
a x+b y=\operatorname{gcd}(a, b)
$$

For example, if $a=43$ and $b=17$,
Why is this helpful? If we could find the x and y, and $\operatorname{gcd}(a, b)=1$, we would get

$$
a x=-b y+1, \text { or } a x \equiv 1 \bmod b
$$

So $a \equiv x^{-1} \bmod b!$

Inverses

How to find the x and y ? Reverse the Euclidean algorithm steps.

$$
\begin{aligned}
& 43=2 \cdot 17+9 \\
& 17=1 \cdot 9+8 \\
& 9=1 \cdot 8+1 \\
& 8=8 \cdot 1
\end{aligned}
$$

Inverses

How to find the x and y ? Reverse the Euclidean algorithm steps.

$$
\begin{array}{ll}
43=2 \cdot 17+9 & \\
17=1 \cdot 9+8 & 1=9-1 \cdot(17-1 \cdot 9)=-1 \cdot 17+2 \cdot 9 \\
9=1 \cdot 8+1 & 1=9-1 \cdot 8 \\
8=8 \cdot 1 &
\end{array}
$$

Inverses

How to find the x and y ? Reverse the Euclidean algorithm steps.

$$
\begin{array}{ll}
43=2 \cdot 17+9 & 1=-1 \cdot 17+2 \cdot(43-2 \cdot 17)=-3 \cdot 17+2 \cdot 43 \\
17=1 \cdot 9+8 & 1=9-1 \cdot(17-1 \cdot 9)=-1 \cdot 17+2 \cdot 9 \\
9=1 \cdot 8+1 & 1=9-1 \cdot 8 \\
8=8 \cdot 1 &
\end{array}
$$

Inverses

How to find the x and y ? Reverse the Euclidean algorithm steps.

$$
\begin{array}{ll}
43=2 \cdot 17+9 & 1=-1 \cdot 17+2 \cdot(43-2 \cdot 17)=-3 \cdot 17+2 \cdot 43 \\
17=1 \cdot 9+8 & 1=9-1 \cdot(17-1 \cdot 9)=-1 \cdot 17+2 \cdot 9 \\
9=1 \cdot 8+1 & 1=9-1 \cdot 8 \\
8=8 \cdot 1 &
\end{array}
$$

So $1=-3 \cdot 17+2 \cdot 43$, i.e. $x=-3$ and $y=2$, and

$$
17^{-1} \equiv-3 \equiv 40 \quad \bmod 43
$$

(Also, $\left.43^{-1} \equiv 2 \bmod 17.\right)$

Discussion questions

Some questions we might think about in the future:

- Why does x have an inverse $\bmod n$ if and only if $\operatorname{gcd}(x, n)=1$? (Why does the Reverse Euclidean Algorithm fail if the gcd isn't 1?)

Discussion questions

Some questions we might think about in the future:

- Why does x have an inverse $\bmod n$ if and only if $\operatorname{gcd}(x, n)=1$? (Why does the Reverse Euclidean Algorithm fail if the gcd isn't 1?)
- If x has an inverse $\bmod n$, then we can talk about $y / x=y x^{-1}$ $\bmod n$ for any integer y. What about irrational numbers, like $\sqrt{2} \bmod 3$? Do those 'make sense'?

Discussion questions

Some questions we might think about in the future:

- Why does x have an inverse $\bmod n$ if and only if $\operatorname{gcd}(x, n)=1$? (Why does the Reverse Euclidean Algorithm fail if the gcd isn't 1?)
- If x has an inverse $\bmod n$, then we can talk about $y / x=y x^{-1}$ $\bmod n$ for any integer y. What about irrational numbers, like $\sqrt{2} \bmod 3$? Do those 'make sense'?
- In the real numbers, there is no number x such that $x^{2}=-1$. So, we made one up: $i^{2}=-1$. Also, there is no integer x such that $x^{2} \equiv 3 \bmod 5$. What if we made one up, say $\alpha^{2} \equiv 3 \bmod 5$? What properties would α have?

Discussion questions

Some questions we might think about in the future:

- Why does x have an inverse $\bmod n$ if and only if $\operatorname{gcd}(x, n)=1$? (Why does the Reverse Euclidean Algorithm fail if the gcd isn't 1?)
- If x has an inverse $\bmod n$, then we can talk about $y / x=y x^{-1}$ $\bmod n$ for any integer y. What about irrational numbers, like $\sqrt{2} \bmod 3$? Do those 'make sense'?
- In the real numbers, there is no number x such that $x^{2}=-1$. So, we made one up: $i^{2}=-1$. Also, there is no integer x such that $x^{2} \equiv 3 \bmod 5$. What if we made one up, say $\alpha^{2} \equiv 3 \bmod 5$? What properties would α have?
- We found an algorithm to compute the inverse of a number $\bmod n$ if the inverse exists. Can you come up with an algorithm to compute the square root of a number mod n if it exists?

