Montlake Math Challenge

March 6, 2007
Remember that i is the special number $\sqrt{-1}$, so that $i \times i=-1$. If we have $z=a+b i$, where a and b are ordinary real numbers, then we call the absolute value of z the value $|z|=\sqrt{a^{2}+b^{2}}$. For example, if $z=i+2$, then the absolute value of z is $\sqrt{1^{2}+2^{2}}=$ $\sqrt{1+4}=\sqrt{5}$

1. On an attached sheet of graph paper or below, draw the real line from -10 to 10 . Then draw the imaginary axis from $-10 i$ to $10 i$. Now draw a circle with radius 5 and center 0 . (It should go through all of the points $5,-5,5 i$ and $-5 i$). It turns out that these are the points with absolute value 5 .
How many other (whole number) complex points lie on this circle? Show that the points you found above are exactly on this circle by calculating their absolute values.
2. Find a complex number $z=a+b i$ that solves the equation.

$$
\begin{gathered}
3 i+z=15 i \\
z+2 i=1+2 i \\
(2 i+3)+z=5 i+2 \\
z+(i-1)=2 i+3
\end{gathered}
$$

3. (Harder) Find a complex number $z=a+b i$ that solves the equation.

$$
\begin{gathered}
3 i \times z=15 i \\
z \times 2 i=-14 \\
(2 i+3) \times z=-4+6 i \\
z \times(3 i-1)=8 i-14
\end{gathered}
$$

