Your Name:	Room:
Grade:	Teacher:

Montlake Math Challenge Montlake Elementary School February 7, 2008

Problem 1: Fill in the (mod 5) addition table below:

	0	1	2	3	4
0					
1					
2					
3					
4					

Problem 2: Fill in the (mod 8) addition table below:

	0	1	2	3	4	5	6	7
0								
1								
2								
3								
4								
5								
6								
7								

Problem 3: Fill in the blanks.

a) $8 \pmod{3} =$ b) $17 \pmod{8} =$ c) $8 \pmod{4} =$ _____ d) $7 \pmod{5} =$ e) $6 \pmod{5} =$ f) $7 + 6 \pmod{5} =$ $2+1 \pmod{5} =$ **g**) h) $20 \pmod{11} =$ 35 (mod 11) = _____ i) $20 + 35 \pmod{11} =$ j) k) $9+2 \pmod{11} =$ l) $7 \pmod{3} =$ _____ m) $5 \pmod{3} =$ n) $7 \times 5 \pmod{3} =$ o) $5 \pmod{4} =$ p) $5 \times 5 \pmod{4} =$ q) $5 \times 5 \times 5 \pmod{4} =$ $10 \pmod{6} =$ r) $9 \pmod{6} =$ s) $10 \times 9 \pmod{6} =$ t) u) $4 \pmod{5} =$ v) $4 \times 4 \pmod{5} =$ w) $4 \times 4 \times 4 \pmod{5} =$ x) $4 \times 4 \times 4 \times 4 \pmod{5} =$ **Problem 3:** Fill in the blanks.

1. gcd(4,6) = _____

2. gcd(21, 12) =_____

3. gcd(50, 60) = _____

4. gcd(9, 27) = _____

5. gcd(7, 9) =_____

6. gcd(9, 33) =_____

Problem 4: A *prime number* is a number *p* whose only divisors are 1 and *p*. For technical reasons, we do not allow 1 to be a prime number.

Problem 4a: Write the first eight prime numbers.

Problem 4b: If *p* is a prime number and *n* is any other number, what are the possible values for gcd(p,n)?

Number <i>n</i>	gcd(<i>n</i> ,12)
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	

Problem 5: In the following table, fill in the gcd of the listed number with 12:

Problem 6: Given a number n, we say its **order** (mod 12) is the smallest number of times we can add n to itself to get a number that is divisible by 12. For example, if n=8, we have

$$8 + 8 = 16$$
, which is not divisible by 12

$$8 + 8 + 8 = 25$$
, which is divisible by 12

so the order of 8 is 3. Fill in the table below with the orders of each listed number (mod 12).

Number <i>n</i>	Order of <i>n</i> (mod 12)
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	

Number <i>n</i>	gcd(<i>n</i> ,12)	Order of <i>n</i> (mod 12)
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		

Problem 7: Fill in the following table using problems 5 and 6. What do you notice?