Math Challenge

Washington Middle School
May 6th, 2010
New Numbers

Instructions:

Steve forgot what numbers are, so he decided to make up his own. Here are some numbers that he invented:

31254, 132, 3761542, 4132, 216435, 2413
Toby tried to write down some numbers too, but Steve told him that they didn't count as numbers:

$$
13321,243,6754138,541532,332
$$

Exercise 1.

Cross out all the numbers that don't count according to Steve.

$$
615324,1327645,31514,12345,541,7,41532,3521,312,4132,13542,1,14263675
$$

Exercise 2.

a) Write down all the 1 -digit numbers for Steve. How many are there?
b) Write down all the 2 -digit numbers. How many are there?
c) Write down all the 3-digit numbers. How many are there?
d) Write down all the 4-digit numbers. How many are there?
e) Can you find a formula for the number of n-digit numbers?

Exercise 3.

Next, Steve decided to invent a new version of multiplication. Here are some of his results:

$213 \cdot 321$	$=231$
$2143 \cdot 4321$	$=3412$
$21435 \cdot 54321$	$=45231$
$214356 \cdot 654321$	$=563421$
$2143567 \cdot 7654321$	$=6745321$
$21435678 \cdot 87654321$	$=78564321$
$321 \cdot 213$	$=312$
$4321 \cdot 2413$	$=3142$
$54321 \cdot 13524$	$=42531$
$654321 \cdot 234651$	$=156432$
$7654321 \cdot 2543671$	$=1763452$
$1324 \cdot 3421$	$=3241$
$1324 \cdot 3412$	$=3142$
$1324 \cdot 3142$	$=3412$
$1324 \cdot 1342$	$=1432$
$1324 \cdot 1324$	$=1342$
$1324 \cdot 1432$	$=123$
$123 \cdot 123$	$=321$
$123 \cdot 321$	$=231$
$123 \cdot 231$	$=213$
$132 \cdot 231$	$=123$
$213 \cdot 213$	$=231$
$213 \cdot 321$	$=213$
$213 \cdot 123$	$=123$
$321 \cdot 321$	$=312$
$231 \cdot 231$	$=132$
$231 \cdot 213$	$=12453$
$23145 \cdot 41253$	$=1432576$
$3761542 \cdot 2617534$	

Try to figure out how to multiply these numbers for Steve:

```
312 - 132
=
52143\cdot14235 =
21\cdot21 =
1347652\cdot3614527 =
4321 - 2341
```

\qquad

```
\(52143 \cdot 14235\)
```

\qquad

```
1347652\cdot3614527
```

\qquad

```
\(=\)
``` \(\qquad\)

\section*{Exercise 4.}

Now Steve starts to sort his numbers into odds and evens:
\begin{tabular}{c|c}
\(\underline{\text { Evens }}\) & \(\underline{\text { Odds }}\) \\
\hline 12 & 21 \\
123 & 132 \\
231 & 321 \\
312 & 213 \\
1234 & 1243 \\
1423 & 1432 \\
4132 & 4312 \\
3412 & 3142 \\
3761542 & 31425 \\
31452 & 51243 \\
2345176 & 12345687 \\
4321 & 12345876
\end{tabular}

Sort the following numbers into evens and odds:
\[
13245,1234,623415,21,312,3142,24531,987654321
\]
\begin{tabular}{l|l}
Evens & Odds \\
\hline & \\
\end{tabular}

\section*{Exercise 5.}

How many 1-digit even numbers are there?
2-digit even numbers?
3-digit even numbers?
Any conjectures on what the pattern is? Can you prove your conjecture?```

