Math Challenge

Washington Middle School May 6th, 2010

New Numbers

Instructions:

Steve forgot what numbers are, so he decided to make up his own. Here are some numbers that he invented:

31254, 132, 3761542, 4132, 216435, 2413

Toby tried to write down some numbers too, but Steve told him that they didn't count as numbers:

13321, 243, 6754138, 541532, 332

Exercise 1.

Cross out all the numbers that don't count according to Steve.

615324, 1327645, 31514, 12345, 541, 7, 41532, 3521, 312, 4132, 13542, 1, 14263675

Exercise 2.

a) Write down all the 1-digit numbers for Steve. How many are there?

b) Write down all the 2-digit numbers. How many are there?

c) Write down all the 3-digit numbers. How many are there?

d) Write down all the 4-digit numbers. How many are there?

e) Can you find a formula for the number of n-digit numbers?

Exercise 3.

Next, Steve decided to invent a new version of multiplication. Here are some of his results:

$\begin{array}{c} 213 \cdot 321 \\ 2143 \cdot 4321 \\ 21435 \cdot 54321 \\ 214356 \cdot 654321 \\ 2143567 \cdot 7654321 \\ 21435678 \cdot 87654321 \end{array}$		3412 45231 563421 6745321
$\begin{array}{c} 321 \cdot 213 \\ 4321 \cdot 2413 \\ 54321 \cdot 13524 \\ 654321 \cdot 234651 \\ 7654321 \cdot 2543671 \end{array}$	= = = =	
$1324 \cdot 3421 \\1324 \cdot 3412 \\1324 \cdot 3142 \\1324 \cdot 1342 \\1324 \cdot 1324 \\1324 \cdot 1324 \\1324 \cdot 1432 \\$		3142 3412 1432
$123 \cdot 123 \\123 \cdot 321 \\123 \cdot 231 \\132 \cdot 231 \\213 \cdot 213 \\213 \cdot 321 \\213 \cdot 123 \\321 \cdot 321 \\231 \cdot 231 \\231 \cdot 213$	=	321 231 213 123 231 213 123
23145 · 41253 3761542 · 2617534	=	12100

Try to figure out how to multiply these numbers for Steve:

312 · 132	= _	
52143 · 14235	=_	
21 · 21	=	
1347652 · 3614527	=	
4321 · 2341	=]	

Exercise 4.

Now Steve starts to sort his numbers into odds and evens:

Evens	Odds
12	21
123	132
231	321
312	213
1234	1243
1423	1432
4132	4312
3412	3142
3761542	31425
31452	51243
2345176	12345687
4321	12345876
12345786	

Sort the following numbers into evens and odds:

13245, 1234, 623415, 21, 312, 3142, 24531, 987654321

Evens	Odds

Exercise 5.

How many 1-digit even numbers are there?

2-digit even numbers?

3-digit even numbers?

Any conjectures on what the pattern is? Can you prove your conjecture?