Math Challenge

Washington Middle School March 4, 2010

Warm-Up Activity

Pretend that it's 3:00 now. Answer the following questions, but don't worry about AM/PM.

Problem 1a: In 17 hours, what time will the clock show?

Problem 1b: In 33 hours, what time will the clock show?

Problem 1c: What time did the clock show 15 hours ago?

Problem 1d: What time will the clock read 17 hours after the time it shows 19 hours before 4:00?

Today is Thursday. Answer the following questions.

Problem 2a: What day of the week will it be 5 days from now?

Problem 2b: What day of the week will it be 17 days from now?

Problem 2c: What day of the week was it 10 days ago?

Math Challenge

Washington Middle School March 4, 2010

Modular Arithmetic

We use the notation $A = R \pmod{N}$ to mean that A has remainder R when divided by N.

Problem 3: Fill in the blanks.

a) $8 \pmod{3} =$ b) 17 (mod 8) = _____ c) $8 \pmod{4} =$ d) $7 \pmod{5} =$ e) $6 \pmod{5} =$ 1. $7 + 6 \pmod{5} =$ 2. $2+1 \pmod{5} =$ f) $20 \pmod{11} =$ g) $35 \pmod{11} =$ 1. $20 + 35 \pmod{11} =$ 2. $9+2 \pmod{11} =$ h) $7 \pmod{3} =$ i) $5 \pmod{3} =$ 1. $7 \times 5 \pmod{3} =$ i) $5 \pmod{4} =$ 1. $5 \times 5 \pmod{4} =$ 2. $5 \times 5 \times 5 \pmod{4} =$ k) $4 \pmod{5} =$ 1. $4 \times 4 \pmod{5} =$ 2. $4 \times 4 \times 4 \pmod{5} =$ 3. $4 \times 4 \times 4 \times 4 \pmod{5} =$ **Problem 4:** What is the remainder of $2007 \times 2008 + 2009^2$ when divided by 7?

Problem 5: If your birthday was on a Tuesday last year, on what day will your birthday fall this year? On what day did your birthday fall the previous year?

Problem 6: Pretend you were born on March 2. In 2003, your birthday was on a Monday. On what day did your birthday fall in 2004?

Problem 7: On what day of the week were you born?

Problem 8: Harry goes to the store to buy some candy. He buys: 24 kit-kats 17 peanut butter cups 16 snickers.

Snickers and peanut butter cups cost the same price and the cashier charges Harry \$18.65. Harry realizes that the cashier made a mistake and turns him into a toad. How did he know?

Problem 9:* What are the last two digits of 2^{2010} ?

Hint: Compute the last two digits of the following numbers:

 2^{1} 2^{2} 2^{4} 2^{8} 2^{16} 2^{32} 2^{64} 2^{128} 2^{256} 2^{512} 2^{1024} **Problem 10:** Jeff adds 3 counting numbers (w + x + y) and correctly gets an even sum. Karen adds 2 of the same numbers as Jeff added, plus a different third number (w + x + z) and correctly gets an odd sum. Is the sum of y + z even or odd?

Problem 11*: What is the last digit of the number

 $1^2 + 2^2 + 3^2 + \dots + 98^2 + 99^2?$

Challenge Problems

CP1: Let $N = a_m a_{m-1} \dots a_2 a_1 a_0$ be an *m*-digit number with digits a_0, a_1, \dots, a_m .

- 1. Show that *N* is divisible by 3 if and only if $a_0 + a_1 + ... + a_m$ is divisible by 3.
- 2. Show that *N* is divisible by 9 if and only if $a_0 + a_1 + ... + a_m$ is divisible by 9.
- 3. Show that *N* is divisible by 11 if and only if $a_0 a_1 + a_2 \dots \pm a_m$ is divisible by 11.

CP2: Show that $2222^{5555} + 5555^{2222}$ is divisible by 7.

CP3: Show that $3^{6n}-2^{6n}$ is divisible by 35 for *any* positive integer *n*.