Math Challenge

Washington Middle School March 4, 2010
Warm-Up Activity

Pretend that it's 3:00 now. Answer the following questions, but don't worry about AM/PM.
Problem 1a: In 17 hours, what time will the clock show?

Problem 1b: In 33 hours, what time will the clock show?

Problem 1c: What time did the clock show 15 hours ago?

Problem 1d: What time will the clock read 17 hours after the time it shows 19 hours before $4: 00$?

Today is Thursday. Answer the following questions.
Problem 2a: What day of the week will it be 5 days from now?

Problem 2b: What day of the week will it be 17 days from now?

Problem 2c: What day of the week was it 10 days ago?

Math Challenge

Washington Middle School March 4, 2010

Modular Arithmetic
We use the notation $A=R(\bmod N)$ to mean that A has remainder R when divided by N.
Problem 3: Fill in the blanks.
a) $8(\bmod 3)=$ \qquad
b) $17(\bmod 8)=$ \qquad
c) $8(\bmod 4)=$ \qquad
d) $7(\bmod 5)=$ \qquad
e) $6(\bmod 5)=$ \qquad

1. $7+6(\bmod 5)=$ \qquad
2. $2+1(\bmod 5)=$ \qquad
f) $20(\bmod 11)=$ \qquad
g) $35(\bmod 11)=$ \qquad
3. $20+35(\bmod 11)=$ \qquad
4. $9+2(\bmod 11)=$ \qquad
h) $7(\bmod 3)=$ \qquad
i) $5(\bmod 3)=$ \qquad
5. $7 \times 5(\bmod 3)=$ \qquad
j) $5(\bmod 4)=$ \qquad
6. $5 \times 5(\bmod 4)=$ \qquad
7. $5 \times 5 \times 5(\bmod 4)=$ \qquad
k) $4(\bmod 5)=$ \qquad
8. $4 \times 4(\bmod 5)=$ \qquad
9. $4 \times 4 \times 4(\bmod 5)=$ \qquad
10. $4 \times 4 \times 4 \times 4(\bmod 5)=$ \qquad

Problem 4: What is the remainder of $2007 \times 2008+2009^{2}$ when divided by 7 ?

Problem 5: If your birthday was on a Tuesday last year, on what day will your birthday fall this year? On what day did your birthday fall the previous year?

Problem 6: Pretend you were born on March 2. In 2003, your birthday was on a Monday. On what day did your birthday fall in 2004?

Problem 7: On what day of the week were you born?

Problem 8: Harry goes to the store to buy some candy. He buys:
24 kit-kats
17 peanut butter cups
16 snickers.
Snickers and peanut butter cups cost the same price and the cashier charges Harry \$18.65. Harry realizes that the cashier made a mistake and turns him into a toad. How did he know?

Problem 9:* What are the last two digits of 2^{2010} ?
Hint: Compute the last two digits of the following numbers:
2^{1}
2^{2}
2^{4}
2^{8}
2^{16}
2^{32}
2^{64}
2^{128}
2^{256}
2^{512}
2^{1024}

Problem 10: Jeff adds 3 counting numbers ($w+x+y$) and correctly gets an even sum. Karen adds 2 of the same numbers as Jeff added, plus a different third number $(w+x+z)$ and correctly gets an odd sum. Is the sum of $y+z$ even or odd?

Problem 11*: What is the last digit of the number

$$
1^{2}+2^{2}+3^{2}+\ldots+98^{2}+99^{2} ?
$$

Challenge Problems

CP1: Let $N=\mathrm{a}_{\mathrm{m}} \mathrm{a}_{\mathrm{m}-1} \ldots \mathrm{a}_{2} \mathrm{a}_{1} \mathrm{a}_{0}$ be an m-digit number with digits $\mathrm{a}_{0}, \mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}}$.

1. Show that N is divisible by 3 if and only if $\mathrm{a}_{0}+\mathrm{a}_{1}+\ldots+\mathrm{a}_{\mathrm{m}}$ is divisible by 3 .
2. Show that N is divisible by 9 if and only if $\mathrm{a}_{0}+\mathrm{a}_{1}+\ldots+\mathrm{a}_{\mathrm{m}}$ is divisible by 9 .
3. Show that N is divisible by 11 if and only if $\mathrm{a}_{0}-\mathrm{a}_{1}+\mathrm{a}_{2}-\ldots \pm \mathrm{a}_{\mathrm{m}}$ is divisible by 11 .

CP2: Show that $2222^{5555}+5555^{2222}$ is divisible by 7 .

CP3: Show that $3^{6 n}-2^{6 n}$ is divisible by 35 for any positive integer n.

