HOMEWORK \#2, DUE 10/14

Math 504A

1. Show that the free product $\mathbb{Z}_{2} * \mathbb{Z}_{2}$ of two copies of \mathbb{Z}_{2} is isomorphic to the infinite dihedral group, that is the semidirect product of \mathbb{Z} and \mathbb{Z}_{2}, where the nontrivial element of \mathbb{Z}_{2} acts on \mathbb{Z} by sending any integer to its negative.
2. Show that the group $P=P S L_{2}(\mathbb{Z})$ is isomorphic to the free product of \mathbb{Z}_{3} and \mathbb{Z}_{2}, as outlined below.
(a) Show that the matrices $A^{\prime}=\left(\begin{array}{cc}-1 & -1 \\ 1 & 0\end{array}\right)$ and $B^{\prime}=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ generate the group $S=S L_{2}(\mathbb{Z})$, by first showing that the matrix $C=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ is generated by A^{\prime} and B^{\prime}. Then, given any matrix $M \in S$, show how to multiply M on the left by products of suitable powers of C and B^{\prime} to perform any desired row operation on it (preserving the determinant as 1) with integer coefficients. Using the Euclidean algorithm, transform the first column of M into $\binom{1}{0}$ by such operations, and then observe that M must now be a power of C.
(b) It follows that the images A, B in P generate P; note that A has order 3 while B has order 2 . Now show that no nonempty product of elements in P that are alternately A or A^{2} and B can equal 1. (Look at the linear fractional transformations T_{1}, T_{2}, T_{3}, corresponding to A, A^{2}, B, respectively, and observe that T_{1} maps positive irrational numbers to negative irrational numbers less than $-1, T_{2}$ maps positive irrational numbers to negative irrationals greater than -1 , and finally that T_{3} sends negative to positive irrationals.) Deduce the desired result.
3. Find products X_{1}, X_{2} of A, B corresponding to the matrices $\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$ and $\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right)$ in P and show that the X_{i} freely generate a subgroup of P (which turns out to have finite index).
4. Classify the subgroups of index two of the free group F_{2} on two generators x, y, giving a set of free generators of each such subgroup.
5. Find a subgroup of F_{2} that is free on infinitely many generators and give the generators explicitly.
