HOMEWORK #3, DUE 10/21

MATH 504A

1. Let M be an $n \times n$ matrix over a commutative ring R with det M = 0. Show that there is a nonzero $v \in R^n$ with Mv = 0, by first letting k be the largest positive integer (if any) with some $k \times k$ submatrix of M having nonzero determinant, and using determinants of suitable $k \times k$ submatrices of M as the coordinates of v. Deduce that no R-module map from R^n to R^m can be injective if n > m.

2. Show that the ring R of linear transformations from the direct sum \mathbb{R}^{∞} of countably many copies of the real numbers \mathbb{R} to itself is such that $R \cong R \oplus R$ as an R-module, by dividing a basis for the domain of any such transformation into two countably infinite subsets.

3. Show that the direct product $M = \mathbb{Z}^{\omega}$ of countably many copies of \mathbb{Z} , consisting by definition of all sequences $(z_1, z_2, ...)$ with the $z_i \in \mathbb{Z}$ but no other restriction is not a free \mathbb{Z} -module, as follows. First note that M is uncountable, while the direct sum $N = \mathbb{Z}^{\infty}$ consisting of all sequences with all but finitely many z_i equal to 0 is countable. If M had a basis B over \mathbb{Z} , then some countable subset of B, say B', would span N. Let M' be the quotient of M by the span of B'; then M' would be free with basis the images in it of the elements in B but not B'. The span of B' is countable, so at least one of the uncountably many elements $(\pm 1!, \pm 2!, ...)$ has nonzero image v in M'. Show that for any nonzero integer i there is $v_i \in M'$ with $iv_i = v$; but no nonzero element of a free \mathbb{Z} -module has this property.

4. Classify the finitely generated \mathbb{Z} -submodules of \mathbb{Q} and show in particular that the subring of \mathbb{Q} generated by 1/2 is not finitely generated as a \mathbb{Z} -module.

5. Show that the tensor product (over \mathbb{Z}) of the \mathbb{Z} -modules \mathbb{Z}_m and \mathbb{Z}_n is 0 whenever m, n are relatively prime integers.