HOMEWORK \#3, DUE 10/21

MATH 504A

1. Let M be an $n \times n$ matrix over a commutative $\operatorname{ring} R$ with $\operatorname{det} M=0$. Show that there is a nonzero $v \in R^{n}$ with $M v=0$, by first letting k be the largest positive integer (if any) with some $k \times k$ submatrix of M having nonzero determinant, and using determinants of suitable $k \times k$ submatrices of M as the coordinates of v. Deduce that no R-module map from R^{n} to R^{m} can be injective if $n>m$.
2. Show that the ring R of linear transformations from the direct sum \mathbb{R}^{∞} of countably many copies of the real numbers \mathbb{R} to itself is such that $R \cong R \oplus R$ as an R-module, by dividing a basis for the domain of any such transformation into two countably infinite subsets.
3. Show that the direct product $M=\mathbb{Z}^{\omega}$ of countably many copies of \mathbb{Z}, consisting by definition of all sequences $\left(z_{1}, z_{2}, \ldots\right)$ with the $z_{i} \in \mathbb{Z}$ but no other restriction is not a free \mathbb{Z}-module, as follows. First note that M is uncountable, while the direct sum $N=\mathbb{Z}^{\infty}$ consisting of all sequences with all but finitely many z_{i} equal to 0 is countable. If M had a basis B over \mathbb{Z}, then some countable subset of B, say B^{\prime}, would span N. Let M^{\prime} be the quotient of M by the span of B^{\prime}; then M^{\prime} would be free with basis the images in it of the elements in B but not B^{\prime}. The span of B^{\prime} is countable, so at least one of the uncountably many elements $(\pm 1!, \pm 2!, \ldots)$ has nonzero image v in M^{\prime}. Show that for any nonzero integer i there is $v_{i} \in M^{\prime}$ with $i v_{i}=v$; but no nonzero element of a free \mathbb{Z}-module has this property.
4. Classify the finitely generated \mathbb{Z}-submodules of \mathbb{Q} and show in particular that the subring of \mathbb{Q} generated by $1 / 2$ is not finitely generated as a \mathbb{Z}-module.
5. Show that the tensor product (over \mathbb{Z}) of the \mathbb{Z}-modules \mathbb{Z}_{m} and \mathbb{Z}_{n} is 0 whenever m, n are relatively prime integers.
