
SOLUTIONS TO HOMEWORK #4, DUE 10/28

1. First suppose that the matrix M is the companion matrix C(p) attached to a
single monic polynomial p. The minimal polynomial of C(p) is p itself, whence the same
is true of its transpose C(pt), since a polynomial q vanishes on a matrix M if and only
if it vanishes on M t. But a matrix in (the invariant factor version of) rational canonical
form, having blocks the companion matrices of p1, . . . , pm with p1|p2| · · · pm, has minimal
polynomial pm, whence the degree of this polynomial equals the size of the matrix if and
only if there is just one block. Hence C(p) is the only possible rational canonical form
for C(p)t, and C(p)t is similar to C(p), as desired. Now a matrix in block diagonal form
with blocks B1, . . . , Bm similar respectively to square matrices C1, . . . Cm, is easily seen
to be similar to the block diagonal matrix with blocks C1, . . . , Cm, so the desired result
now follows from the rational canonical form.

2. This follows at once from the rational canonical form in its invariant factor version:
since two polynomials p1, p2 in K[x] are such that p1|p2 in K[x] if and only if p1|p2 in L[x]
for L a field containing K, it follows that the only possible rational canonical form over L
for a matrix over K is the same as this form over K.

3. A projective module over any ring is a direct summand of a free module; over a PID
R, any free module is torsion-free, since R is an integral domain, so a finitely generated
projective R-module cannot involve any proper quotients R/(q) and must be a finite direct
sum of copies of R. Thus the finitely generated projective R-modules are exactly the free
ones Rm of finite rank.

4. If M is free with basis b1, . . . , bn, then I claim that
∧k

M is also free, with basis
bi1∧bi2∧· · ·∧bik , where the ij range over all indices between 1 and n with i1 < i2 < . . . < ik;
in particular, the rank of this module is(

n

k

)
= n!/(k!(n− k)!)

To see this, it is enough to show (as we did in class for the full tensor power T kM) that an
alternating k-linear function f from M × · · ·M to another R-module N is completely de-
termined by the images f(bi1 , . . . , bik) of tuples of basis vectors with indices as above, and
these images are arbitrary (so that any choice of them gives rise to a unique alternating k-
linear map). It is clear that f(bi1 , . . . , bik) is determined for *any* k-tuple of indices ij by
the values of f(bi1 , . . . , bik) for i1 < . . . < ik, since then f(biσ(1) , . . . , biσ(k)) equals the sign



of σ times f(bi1 , . . . , bik) for any permutation σ of 1, . . . , k, while f(bi1 , . . . , bik) = 0 when-
ever two indices ij are equal. So it remains to show that any choice of f(bi1 , . . . , bik) for all
indices with i1 . . . < ik gives rise to an alternating multilinear f defined on all of Mk. This
follows since a formula for f is given by f(m1, . . . ,mk) =

∑
i1<...ik

Mi1,...ikf(bi1 , . . . bik),
where the matrix Mi1,...ik has its jth column consisting of the coefficients of bi1 , . . . bik when
mj is written as a combination of b1, . . . bn. That such an f is alternating and k-linear
follows from standard properties of determinants (over commutative rings).

5. Write the Z-module M as F/N with F a free Z-module, and let F ′ the free Q-
module (or vector space over Q) on the same basis as F . Then F ′/N contains M and is
divisible and thus injective over Z, as desired.


