SOLUTIONS TO HOMEWORK \#4, DUE 10/28

1. First suppose that the matrix M is the companion matrix $C(p)$ attached to a single monic polynomial p. The minimal polynomial of $C(p)$ is p itself, whence the same is true of its transpose $C\left(p^{t}\right)$, since a polynomial q vanishes on a matrix M if and only if it vanishes on M^{t}. But a matrix in (the invariant factor version of) rational canonical form, having blocks the companion matrices of p_{1}, \ldots, p_{m} with $p_{1}\left|p_{2}\right| \cdots p_{m}$, has minimal polynomial p_{m}, whence the degree of this polynomial equals the size of the matrix if and only if there is just one block. Hence $C(p)$ is the only possible rational canonical form for $C(p)^{t}$, and $C(p)^{t}$ is similar to $C(p)$, as desired. Now a matrix in block diagonal form with blocks B_{1}, \ldots, B_{m} similar respectively to square matrices $C_{1}, \ldots C_{m}$, is easily seen to be similar to the block diagonal matrix with blocks C_{1}, \ldots, C_{m}, so the desired result now follows from the rational canonical form.
2. This follows at once from the rational canonical form in its invariant factor version: since two polynomials p_{1}, p_{2} in $K[x]$ are such that $p_{1} \mid p_{2}$ in $K[x]$ if and only if $p_{1} \mid p_{2}$ in $L[x]$ for L a field containing K, it follows that the only possible rational canonical form over L for a matrix over K is the same as this form over K.
3. A projective module over any ring is a direct summand of a free module; over a PID R, any free module is torsion-free, since R is an integral domain, so a finitely generated projective R-module cannot involve any proper quotients $R /(q)$ and must be a finite direct sum of copies of R. Thus the finitely generated projective R-modules are exactly the free ones R^{m} of finite rank.
4. If M is free with basis b_{1}, \ldots, b_{n}, then I claim that $\bigwedge^{k} M$ is also free, with basis $b_{i_{1}} \wedge b_{i_{2}} \wedge \cdots \wedge b_{i_{k}}$, where the i_{j} range over all indices between 1 and n with $i_{1}<i_{2}<\ldots<i_{k}$; in particular, the rank of this module is

$$
\binom{n}{k}=n!/(k!(n-k)!)
$$

To see this, it is enough to show (as we did in class for the full tensor power $T^{k} M$) that an alternating k-linear function f from $M \times \cdots M$ to another R-module N is completely determined by the images $f\left(b_{i_{1}}, \ldots, b_{i_{k}}\right)$ of tuples of basis vectors with indices as above, and these images are arbitrary (so that any choice of them gives rise to a unique alternating k linear map). It is clear that $f\left(b_{i_{1}}, \ldots, b_{i_{k}}\right)$ is determined for *any* k-tuple of indices i_{j} by the values of $f\left(b_{i_{1}}, \ldots, b_{i_{k}}\right)$ for $i_{1}<\ldots<i_{k}$, since then $f\left(b_{i_{\sigma(1)}}, \ldots, b_{i_{\sigma(k)}}\right)$ equals the sign
of σ times $f\left(b_{i_{1}}, \ldots, b_{i_{k}}\right)$ for any permutation σ of $1, \ldots, k$, while $f\left(b_{i_{1}}, \ldots, b_{i_{k}}\right)=0$ whenever two indices i_{j} are equal. So it remains to show that any choice of $f\left(b_{i_{1}}, \ldots, b_{i_{k}}\right)$ for all indices with $i_{1} \ldots<i_{k}$ gives rise to an alternating multilinear f defined on all of M^{k}. This follows since a formula for f is given by $f\left(m_{1}, \ldots, m_{k}\right)=\sum_{i_{1}<\ldots i_{k}} M_{i_{1}, \ldots i_{k}} f\left(b_{i_{1}}, \ldots b_{i_{k}}\right)$, where the matrix $M_{i_{1}, \ldots i_{k}}$ has its j th column consisting of the coefficients of $b_{i_{1}}, \ldots b_{i_{k}}$ when m_{j} is written as a combination of $b_{1}, \ldots b_{n}$. That such an f is alternating and k-linear follows from standard properties of determinants (over commutative rings).
5. Write the \mathbb{Z}-module M as F / N with F a free \mathbb{Z}-module, and let F^{\prime} the free \mathbb{Q} module (or vector space over \mathbb{Q}) on the same basis as F. Then F^{\prime} / N contains M and is divisible and thus injective over \mathbb{Z}, as desired.

