SOLUTIONS TO HOMEWORK \#5, DUE 11-4

1. (a) Let I be an ideal of R. If $I=0$, then there is only the 0 map from I to a K-vector space V, which extends to 0 on R, so assume that $i \neq 0$ and let $i \in I$. Then any R-module map f from I to a K-vector space V sends i to $i v$ fro some $v \in V$, and if $i, j \in I$ are sent to $i v, j w \in V$, then looking at the image of $i j$ we see that $v=w$. Hence there is a fixed $v \in V$ with $f(x)=x v$ for all $x \in I$, and f extends to the map from R to V sending r to $r v$. By Baer's Criterion, V is in injective over R.
(b) Look at the ideal $I=(x, y)$ generated by x and y in R and let $f: I \rightarrow K^{\prime}$ send a combination $x p+y q$ to the image of q in K^{\prime}, for $p, q \in R$. As $x p=y q$ if and only if there is a polynomial r with $p=y r, q=x r$ (by unique factorization in R, it follows that f is well defined. If f extends to all of R, then $f(1)$ would have to be the image of $(x p+1) / y$ in K^{\prime} for some $p \in R$; but then $f(x)=x(x p+1) / y \neq 0$ in K^{\prime}, a contradiction, since y cannot divide either x or $x p+1$ for any p.
2. For the first part, look at the set of proper two-sided ideals; this is partially ordered by inclusion and the union of any chain of proper ideals is still proper, as each ideal in the chain excludes 1 and so the union does also. Hence there is a maximal proper two-sided ideal. The argument for left ideals is the same, as a proper left ideal must also exclude 1.
3. Letting f be an element of $D=\operatorname{hom}_{R}(S, S)$, we see that the kernel and image of f are both submodules of S, whence both are either all of S or 0 . Hence either $f=0$ or f is both one-to-one and onto and admits a two-sided inverse f^{-1}, which also lies in D, and D is a division ring.
4. First look at the left ideals of R. We know there is a maximal proper left ideal I, which admits a left ideal complement in R by projectivity; this complement must be simple as a left R-module, by maximality of I. Hence R has at least one (nonzero) minimal left ideal. Now look at the set of all collections $\left\{L_{\alpha}: \alpha \in A\right\}$ of left ideals in R such that the sum $\sum L_{\alpha}$ is direct. Such collections are partially ordered by inclusion and the union of chain of such collections is another one, so there is a maximal such collection. The sum of the ideals in it, if proper, lies in a maximal left ideal, which has a minimal complement as above; but then this ideal could be added to the maximal collection, a contradiction. Hence the sum is all of R. But the element $1 \in R$ is the sum of finitely many elements, each from one ideal in the collection, whence the finitely many ideals so involved already have direct sum R, and R is the direct sum of finitely many minimal left ideals.

It follows at once that R satisfies the descending chain condition on left or two-sided ideals: given the direct sum $R=\oplus i=1^{n} L_{i}$, any infinitely strictly descending chain of left ideals would give rise to such a chain either in L_{1} or $R / L_{1} \cong \oplus_{i=2}^{n} L_{i}$, which is impossible
by induction. It follows that any nonempty set of left ideals or two-sided ideals in R has a minimal element.

Thus R has at least one minimal two-sided ideal I, which has a left ideal complement J. Writing 1 as $e+f$ where $e \in I, f \in J$, we see that the left R-submodules $R e, R f=R(1-e)$ of I, J already have sum R, whence $I=R e, J=R(1-e)$. Then $e R(1-e) \subset I \cap J=0$, whence $R(1-e) \subset(1-e) R$ (since R is also the direct sum of $e R$ and $(1-e) R$ and $e(e x)=e x$ for all $x \in R$). It follows that $(1-e) R$ is a two-sided ideal of R, which does not contain e (since $e y=0$ for all $y \in(1-e) R$, and the intersection $(1-e) R \cap R e=0$ by minimality of $R e$. But the sum of $R e$ and $(1-e) R$, as a right ideal, must be all of R, whence finally $J=(1-e) R$ is a two-sided ideal complementary to I. Looking at two-sided R-subideals of J, we find another minimal one, which again admits a two-sided complement, and so on; in this way we get a direct sum $R_{1} \oplus R_{2} \oplus \cdots$ of minimal two-sided ideals of R. This sum must terminate after finitely many steps with a decomposition of all of R, by the descending chain condition, so at least we get the decomposition claimed. Writing 1 as $\sum e_{i}$ with $e_{i} \in R_{i}$, we check immediately by multiplication that $\sum_{i} e_{i}=1, e_{i} e_{j}=0$ if $i \neq j, e_{i}^{2}=e_{i}$, and at last we are done.
5. As in the first part of the last problem, write each R_{i} as the direct sum of finitely many simple left ideals $L_{i j}$. Given two such ideals, say $L_{i 1}, L_{i 2}$, note first that the annihilator $\left\{x \in R_{i}: x L i, 2=0\right\}$ of $L_{i 2}$ is a proper two-sided ideal, so must be 0 , and there is $x \in L_{i} 2$ with $L_{i 1} x \neq 0$; but then $L_{i 1} x$ is a nonzero submodule of $L_{i 2}$, which must be all of $L_{i 2}$. Similarly, $\left\{y \in L_{i 1}: y x=0\right\}$ is a submodule of $L_{i 1}$, which must be 0 , so we conclude that $L i 1 \cong L_{i 2}$, as desired.

