SOLUTIONS TO HOMEWORK \#2, 10-14

1. Let x, y be generators of two copies of \mathbb{Z}_{2} and let G be the free product of these copies. By definition of this product, the elements of G are exactly the powers $(x y)^{n},(y x)^{n}=(x y)^{-n}$ for n a nonnegative integer and the products $x(x y)^{n}$ for n an arbitrary integer. It follows at once that $x y$ has infinite order in G, x has order 2 , and the conjugate of $x y$ by x is $y x=(x y)^{-1}$. These properties are the ones defining the infinite dihedral group D_{∞}, whence $G \cong D_{\infty}$, as required.
2. (a) Begin by noting that the matrix $C=B^{\prime}\left(A^{\prime}\right)^{2}$, so does indeed lie in the subgroup G of $S L_{2}(\mathbb{Z})$ generated by A^{\prime} and B^{\prime}. Multiplying a matrix M in $S L_{2}(\mathbb{Z})$ on the left by C^{k} amounts to adding k times the second row of M to its first row; multiplying M on the left by B^{\prime} interchanges its two rows and then replaces the first row by its negative. Now one step of the Euclidean algorithm, applied to a pair (a, b) of integers not both 0 ,, replaces whichever of a, b has the larger absolute value by its remainder on division by the other, while leaving the other integer unchanged. Iterating this, we replace the original pair (a, b) by ($c, 0$), where c is (say the positive) greatest common divisor of a and b. Applying this algorithm to the entries a, b in the first column of M and changing signs as necessary, we can replace this column by the one with entries $(1,0)$, while the determinant of M is still 1. Then the entries of the second column of M must be $k, 1$ for some integer k, whence M is now the k-th power C^{k} of C. Hence G is all of $S L_{2}(\mathbb{Z})$, as claimed.
(b) It is immediate (as claimed in the problem statement) that the images A, B of A^{\prime}, B^{\prime} in $P S L_{2}(\mathbb{Z})$ have orders 3 and 2 , respectively. The linear fractional transformations T_{1}, T_{2}, and T_{3} corresponding respectively to A, A^{2}, and B send z respectively to $(-z-1) / z=-1-(1 / z), 1 /(-z-1),-1 / z$, whence indeed T_{1} sends positive irrational numbers to negative ones less than $-1, T_{2}$ sends positive irrationals to negative ones greater than -1 , and T_{3} sends negative irrationals to positive ones. Now let $w_{1} \ldots, w_{k}$ be a word of odd length whose letters are alternately A or A^{2} and B. Conjugating it by B if necessary we may assume that it starts and ends with B. The corresponding product of T_{1}, T_{2}, T_{3} then sends negative irrationals to positive ones, so cannot be the identity transformation. Similarly, if instead $w_{1} \ldots w_{k}$ has even length k but is nonempty, then by conjugation we may assume that it starts with B and ends with A or A^{2}. Then the corresponding product of T_{1}, T_{2}, T_{3} sends negative irrationals to negative irrationals less than -1 (if $w_{k}=A$) or to negative irrationals greater than -1 (if $w_{k}=A^{2}$), so cannot be the identity transformation in either case. We conclude that $P S L_{2}(\mathbb{Z})$ is the free product of its cyclic subgroups of orders 3,2 generated by A, B, respectively, as desired.
3. Observe first that $C^{2}=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)=\left(B A^{2}\right)^{2}$ while similarly $\left(C^{t}\right)^{2}=(B A)^{2}$. Examining products of powers of $\left(B A^{2}\right)^{2}$ and $(B A)^{2}$, we see that any such nonempty product reduces to a nonempty product of terms alternating between A or A^{2} and B, which is not the
identity by the previous problem. Hence the subgroup of $P S L_{2}(\mathbb{Z})$ generated by C^{2} and $\left(C^{t}\right)^{2}$ is freely generated by these elements, both of them having infinite order. Thus this subgroup is free on two generators, as desired.
4. Given the free group F_{2} on two generators x, y it is immediate that the only possibilities (up to equivalence) for a Schreier transversal of a subgroup S of index 2 are $\{1, x\}$ and $\{1, y\}$. In the first case the element y of F_{2} lies either in the identity coset of S or the coset of x; if the latter holds the coset of $y x$ must be the identity coset, since S must be normal. Applying the recipe in class for the free generators of a subgroup of a free group, we get just three possibilities for these generators, namely $\left\{x, y^{2}, y x y^{-1}\right\},\left\{y, x^{2}, x y x^{-1}\right\}$, or $\left\{x^{2}, y x^{-1}, x y\right\}$ (note that there is some latitude in the choice of generators in all three cases).
5. The easiest example of a subgroup of F_{2} that is free on infinitely many generators (and thus necessarily of infinite index) is the normal subgroup generated by x. Here a Schreier transversal consists of all the powers of the other variable y and we get $\left\{y^{i} x y^{-i}: i \in \mathbb{Z}\right\}$ as a set of free generators of this subgroup. We could also take the set of such elements $y^{i} x y^{-i}$ with i running through the nonnegative integers only as generators of a different free subgroup of F_{2}.
