Final Exam-Math 505

1. Classify the ideals in a discrete valuation ring.

The unique maximal ideal in such a ring is generated by a single element x; then the nonzero ideals are the principal ones $\left(x^{i}\right)$ generated by a power of x (including $i=0$).
2. The ring $\mathbb{Z}[\sqrt{-11}]$ is not a Dedekind domain. How can one modify this ring slightly to make it a Dedekind domain?
Replace the ring by its integral closure $\mathbb{Z}[(1+\sqrt{-11}) / 2]$.
3. Show that the product $\mathbb{P}^{1} \times \mathbb{P}^{1}$ is not homeomorphic to \mathbb{P}^{2}, by studying the behavior of curves in these two spaces. (Here $\mathbb{P}^{1} \times \mathbb{P}^{1}$ has the Zariski topology, not the product topology.)
Any two curves in \mathbb{P}^{2} intersect, by a result in class; but this is not so for $\mathbb{P}^{1} \times \mathbb{P}^{1}$: if say x_{1}, x_{2} are projective coordinates for the first copy of \mathbb{P}^{1}, then the curves defined by $x_{1}=1, x_{2}=1$ and $x_{1}=1, x_{2}=2$ have empty intersection.
4. Let S be the splitting field of $x^{4}-2$ over \mathbb{Q}, a Galois extension. Work out the intermediate fields between \mathbb{Q} and S of degree 2 over \mathbb{Q} explicitly and indicate to which subgroups of the Galois group of S they correspond.
The fields are $\mathbb{Q}[\sqrt{2}], \mathbb{Q}[\sqrt{-2}]$, and $\mathbb{Q}[i]$, corresponding to the subgroups $\langle r\rangle,\left\langle r^{2}, s\right\rangle$ $,<r^{2}, r s$. of the Galois group D_{4} of S over \mathbb{Q}, D_{4} the dihedral group of order 8, generated by a rotation r of order 4 and a reflection s of order 2 .
5. Let L be the splitting field of the polynomial $x^{3}-3$ over a field K. Give the conditions on K for L to be a Galois extension of it and determine all the possibilities for the Galois group of L over K whenever L is Galois over K.
L is always Galois over K; the only possibly characteristic for K is 3 , but in that case the polynomial reduces to x^{3}, so that $L=K$ is still Galois over K. The possible Galois groups are 1 (if $x^{3}-3$ already splits over K), \mathbb{Z}_{2} (if $x^{3}-3$ has a root in K but 1 had not primitive cube root), \mathbb{Z}_{3} (if the reverse situation applies), or S_{3} (if no cube root of 3 or primitive cube root of 1 is present in K).
6. Give the conditions on a Dedekind domain A for it to admit a finitely generated nonfree projective module M.
A should have nontrivial class group, or equivalently ${ }^{*}$ not* be a PID.
7. Compute the integral closure of the coordinate ring A of the subvariety of \mathbb{C}^{2} with equation $x^{4}=y^{7}$ (that is, the set of elements in the quotient field of A that are integral over it). What variety has this integral closure as its coordinate ring?
Identifying the coordinate ring $K[A] \cong K[x, y] /\left(x^{4}-y^{7}\right)$ of A with $K\left[t^{7}, t^{4}\right]$, the integral closure is $K[t]$, the coordinate ring of the line K^{1}.
8. Compute the strict transform (or blowup) of the variety with defining equation $y^{3}=$ $x^{3}+x^{4}$ at the singular point $(0,0)$.
The equations defining the transform are $y=u x, y^{3}=x^{3}+x^{4}$, or equivalently $u^{3}=x+1$, so this blowup identifies with $\left\{\left(u^{3}-1, u\left(u^{3}-1\right), y\right) ; u \in K\right\}$, or just K itself, K the basefield.

