HW \#1, DUE 1-13

MATH 505A

1. Let F be a finite field. Show that F has the structure of a finite-dimensional vector space over \mathbb{Z}_{p} for some prime p and deduce that the order of F is p^{n} for some positive integer n.
2. Continuing, show that F is the splitting field of the polynomial $x^{p^{n}}-x$ over \mathbb{Z}_{p}.
3. Conversely, let p^{n} be a power of a prime p. We know that the map sending x to x^{p} defines a field homomorphism from any field K of characteristic p to itself. Use this to show that the set S of roots of the polynomial $x^{p^{n}}-x$ over \mathbb{Z}_{p} inside the splitting field F_{n} of this polynomial over \mathbb{Z}_{p} itself forms a field, so that $S=F_{n}$. Show also that all roots of this polynomial are distinct. Finally, show that the Galois group of F_{n} over \mathbb{Z}_{p} is cyclic of order n.
4. Now we know for every prime power p^{n} there is a unique field F_{n} up to isomorphism of order p^{n}. Using the classification of finite abelian groups from last quarter, show that the multiplicative group F_{n}^{*} of F_{n} is cyclic.
5. Deduce for any positive integer m that there is an irreducible monic polynomial of degree m over F_{n}.
