HW \#2, DUE 1-20

MATH 505A

1. Let K be a finite abelian extension of \mathbb{Q} (i.e. a finite Galois extension with abelian Galois group), regarded as a subfield of the complex numbers. Let $\alpha \in K$ be an algebraic integer whose complex norm is 1 . Show that α is a root of 1 , by first showing that all Galois conjugates of α also have norm 1, as do all Galois conjugates of all powers of α, and then arguing that all powers of α are roots of some monic polynomial with bounded degree and bounded integral coefficients; thus all such powers are roots of one of finitely many polynomials p_{1}, \ldots, p_{m} over \mathbb{Z}. Deduce that all entries in the character table of a finite group with complex norm 1 are roots of 1 .
2. Let L be a finite cyclic extension (Galois with a cyclic Galois group G) of a field K. Show that there is $\alpha \in L$ such that the G-conjugates of α form a K-basis of L. (Let g be a generator of G, say with order n. Then g is in particular a K-linear transformation from L to itself of order n. Use the invariant factor decomposition of such a transformation to write L as a direct sum of quotients $K[x] /\left(p_{1}\right), \ldots, K[x] /\left(p_{m}\right)$ as a $K[x]$-module, where $p_{1}\left|p_{2}\right| \cdots \mid p_{m}$; finally use the linear independence of the elements of G as linear transformations of L to show that $m=1$ and $p_{m}=x^{n}-1$.)
3. Show that the polynomial $x^{p^{n}}-x-1$ is irreducible over the field \mathbb{Z}_{p} for p prime if and only if either $n=1$ or $n=p=2$. (This polynomial is irreducible if and only if the Galois group of its splitting field acts transitively on its roots; a generator for this Galois group is the Frobenius automorphism of its splitting field.)
4. Let α be a root of an irreducible polynomial of degree 4 over \mathbb{Z}_{3}. Determine the other roots of this polynomial in terms of α; the answer does not depend on the choice of polynomial.
5. Show that the polynomial $x^{4}+1$ is irreducible over \mathbb{Z} or \mathbb{Q} but reducible over \mathbb{Z}_{p} for any prime p, by looking at elements of order 8 in a suitable extension of \mathbb{Z}_{p}.
