HW \#3, DUE 1-27

MATH 505A

1. Work out a formula for the number $n(q, p)$ of monic irreducible polynomials of prime degree p over the finite field F_{q} of order q, by arguing that the minimal polynomial of any element of the larger field $F_{q^{p}}$ that is not in F_{q} is one such polynomial and that all arise in this way.
2. Let p_{1}, p_{2} be distinct primes. Extend your reasoning in the previous problem to count the number $n\left(q, p_{1}, p_{2}\right)$ of monic irreducible polynomials of degree $p_{1} p_{2}$ over F_{q}.
3. Let α be the positive square root of $(3+\sqrt{3})(2+\sqrt{2})$ in \mathbb{R} and let $K=\mathbb{Q}(\alpha)$ be the field generated by \mathbb{Q} and α. Show that K is also contains $\sqrt{2}$ and $\sqrt{3}$ and is Galois over \mathbb{Q}.
4. With notation as in the previous problem, show that the Galois group of K over \mathbb{Q} is isomorphic to the quaternion unit group.
5. Use Sylow theory and the facts from analysis that every polynomial of odd degree over the reals has a real root and every complex number has a complex square root (you need not prove these assertions) to show that the field \mathbb{C} of complex numbers is algebraically closed.
