HW \#5, DUE 2-10

1. Let R be a Noetherian ring. Show that the polynomial ring $R[x]$ is Noetherian. (You must show that every nonzero ideal I of $R[x]$ is finitely generated; given I, let L consist of all leading coefficients of all nonzero elements of I. Show that L is an ideal of R; if it is generated by the leading terms a_{1}, \ldots, a_{n} of the polynomials $p_{1}, \ldots, p_{n} \in I$, then show that I is the sum of $\left(p_{1}, \ldots, p_{n}\right)$ and the intersection J of I with the set of polynomials in $R[x]$ of degree at most N, where N is the maximum of the degrees of the p_{i}. Finally, show that J is an R-submodule of a free R-module of finite rank, so is finitely generated already as an R-module.). Deduce that the polynomial ring $K\left[x_{1}, \ldots, x_{n}\right]$ in any finite number of variables over a field K is Noetherian.
2. Similarly show that the power series ring $R[[x]]$ is Noetherian whenever R is; arguing similarly to the previous problem, except that L consists of the nonzero coefficients of the lowest power of x in any nonzero element of I.
3. Let p be a prime number and q a monic polynomial in $\mathbb{Z}_{p}[x]$ that has a root of multiplicity one in \mathbb{Z}_{p}. Show that q also has a root in the p-adic integers.
4. Let K be an algebraically closed field and V the subvariety of K^{2} of zeros of the single polynomial $x y-1$. Exhibit the coordinate ring $K[V]$ as an integral extension of a suitable polynomial ring over K and write down the corresponding morphism realizing V as a ramified finite cover of the affine line K^{1}. What are the sizes of the fibers of this morphism?
5. Again let K be algebraically closed and let W be the variety of zeros in K^{2} of the single polynomial $x^{2}-y^{3}$. Exhibit a morphism from the affine line K^{1} onto W that is bijective, but whose inverse is not a morphism (since the associated algebra homomorphism from $K[W]$ to $K\left[K^{1}\right]=K[x]$ is not an isomorphism.)
