HW \#6, DUE 2-22

1. Let C be the ring of continuous real-valued functions on the unit interval $[0,1]$ with addition, subtraction, multiplication and division defined pointwise. Use the compactness of $[0,1]$ to show that the weak Nullstellensatz holds for C : every proper ideal I is such that its variety $V(I)=\{x \in[0,1]: f(x)=0, f \in I\}$ is nonempty. (On the other hand, the strong Nullstellensatz fails for C : it admits nonmaximal ideals I whose varieties reduce to a single point.)
2. Show that the ring $C^{\infty}(\mathbb{R})$ of infinitely differentiable real valued functions on \mathbb{R} is not Noetherian,. (Use the functions f_{a} defined for $a \in \mathbb{R}$ by $f_{a}(x)=e^{-1 /(x-a)^{2}}$ if $x \neq a$ while $f_{a}(a)=0$; you may assume that all derivatives of f_{a} are 0 at $\left.a\right)$.
3. For K an algebraically closed field let $V \subset K^{3}$ be the curve $\left\{\left(t^{3}, t^{4}, t^{5}\right): t \in K\right\}$. Show that V is an irreducible affine subvariety of K^{3} whose ideal I is generated by the three elements $x z-y^{2}, x^{2} y-z^{2}, x^{3}-y z$ of $K[x, y, z]$. Identify the coordinate ring $K[V]$ as a subring of $K[t]$. Show that I is not generated by any two elements of $K[x, y, z]$, by looking at the degrees of the terms of its elements.
4. Show that any affine variety in K^{n} is compact in the Zariski topology.
5. Compute the intersection in \mathbb{P}^{3} of the varieties defined by $x^{2}-y w=0$ and $x y-z w=0$ and show that this intersection is reducible. Identify its components.
