LECTURE 4-10

We wrap up primary decomposition with a couple of further remarks and examples. First, in the situation where M is a finitely generated module over a Noetherian ring R, we know by definition that whenever Ann m is prime, for any $m \in M$, then Ann m is one of the associated primes of M; but in fact, for any $m \neq 0$, if Ann m is not prime, then by looking at an ideal maximal in the set of all Ann $x m$ as x runs over the elements of R such that $x m \neq 0$, we get a prime ideal containing Ann m and lying in Ass M. It follows that the union of the primes in Ass M coincides with the set of zero-divisors on M. Moreover, if an ideal I consists solely of zero-divisors on M, then I lies in the union of the primes in Ass M and so by prime avoidance in just one of them. Thus every ideal of R either contains a non-zero-divisor on M or annihilates a nonzero element of M. A similar argument using finiteness shows that Ass M commutes with localization: if S is any multiplicatively closed subset of R, then $A s s M_{S}$ consists exactly of the prime ideals P_{S} such that $P \in A$ ss M and $P \cap S=\emptyset$.

Next we look at the behavior of primary decomposition for graded modules over graded rings. the basic result states that if $R=\oplus R_{i}$ is graded Noetherian and $M=\oplus M_{i}$ is a finitely generated graded R-module, then any ideal $P=A n n m$ for $m \in M$ that is prime is homogeneous and equal to the annihilator of a homogeneous element. To prove this write any $f \in R$ as $\sum_{i=1}^{s} f_{i}$, where $f_{i} \in R_{d_{i}}$ and $d_{1}<\cdots<d_{s}$. If $f \in P$ we will show that $f_{1} m=0$; by induction this will show that P is homogeneous. Write m as $\sum_{i=1}^{t} m_{i}$ with $m_{i} \in M_{e_{i}}$ and $e_{1}<\cdots<e_{t}$. Argue by induction on t. First, $f m$ is the sum of $f_{1} m_{1}$ and terms of higher degree, so $f_{1} m_{1}=0$. Then $f_{1} m$ is a sum of fewer homogeneous terms than m, so by induction its annihilator I is homogeneous. If $P=I$, then we are done; otherwise choose $g \in I, g \notin P$; then $g f_{1} \in P$ but $g \notin P$, so $f_{1} \in P$, as desired. Now since P is homogeneous we have $P m_{i}=0$ for all i. But then $P \supset \cap_{i}$ Ann $m_{i}, P=\cap_{i}$ Ann $m_{i} \supset \prod_{i}$ Ann m_{i} and by primeness $P=$ Ann m_{i} for some i, as claimed. It follows that all associated primes of any such graded module are homogeneous, a primary decomposition of any graded submodule can be given using only graded submodules, and we can filter any such module M as $M_{0}=0 \subset \ldots \subset M_{n}=M$ in such way that the quotients $M_{i} / M_{i-1} \cong R / P_{i}$ have P_{i} homogeneous (as already observed last quarter).

Finally, we look at symbolic powers $P^{(n)}$ of prime ideals P, as defined in the last lecture, and say how they behave in algebraic geometry while also computing an explicit example where $P^{(2)}$ is strictly larger than P^{2}. If K is an algebraically closed field and P is a prime ideal in $K\left[x_{1}, \ldots, x_{n}\right]$ corresponding to a subvariety V of K^{n}, then it is known that $P^{(n)}$ consists exactly of the elements f of the coordinate ring $K[V]$ vanishing to order at least n at every point of V, in the sense that $f \in M^{n}$ for the maximal ideal M of $K[V]$ corresponding to any point of V. Thus $P^{(n)}$ indeed contains P^{n} but can be strictly larger. For a "naturally occurring" example where this happens, take $x_{i j}$ for $1 \leq i, j \leq 3$ to be a set of independent variables and K an algebraically closed field. Form the generic matrix G whose $i j$-th entry is $x_{i j}$. The radical P of the ideal $I_{2}(G)$ generated by all the 2×2 minors of G is prime, as its corresponding variety V is the set of all 3×3 matrices over K of rank at most 1 and we can realize V as the closure of the image of the product $X=G L_{3}(K) \times G L_{3}(K)$ under the morphism f sending a pair (g, h) in this product to
$g m h$, where m is a fixed 3×3 matrix over K of $\operatorname{rank} 1$, and $G L_{3}(K)$ is a principal Zariskiopen subset of K^{9} (defined by the nonvanishing of the determinant) and so is (isomorphic to) an irreducible affine variety. Thus V is irreducible, as a decomposition of it into proper closed subsets would decompose $X \times X$ into proper closed subsets (by applying f^{-1}) and $X \times X$ is irreducible. (In fact $I_{2}(G)$ is already prime, being equal to its radical, but we will not need this result.) Now we claim that $g=\operatorname{det} G$ lies in $P^{(2)}$; clearly it does not lie in P^{2} as it is homogeneous of degree 3 but P^{2} is spanned by homogeneous polynomials of degree at least 4. To show that $g \in P^{(2)}$, it suffices to show that $x_{11} g \in I_{2}(G)^{2}$, since clearly $x_{11} \notin \sqrt{I_{2}(G)}$. Multiplying the second and third columns of G by x_{11} and row-reducing, we see that $x_{11}^{2} g$ is the product of x_{11} and a 2×2 determinant of matrix whose entries are 2×2 minors of G, so $x_{11} g$ lies in $I_{2}(G)^{2}$, as claimed. (Note that this result agrees with the characterization of symbolic nth powers of prime ideals in polynomial rings above, since the partial derivatives of $\operatorname{det} G$ with respect to each of its variables are 2×2 minors of G, so lie in $\left.I_{2}(G)\right)$. In fact it can be shown that $P^{(2)}$ is generated by P^{2} and g in this case; there are more general formulas for the symbolic powers of prime ideals generated by minors of generic matrices of any fixed size.

