
LECTURE 4-10

We wrap up primary decomposition with a couple of further remarks and examples.
First, in the situation where M is a finitely generated module over a Noetherian ring R,
we know by definition that whenever Ann m is prime, for any m ∈ M , then Ann m is
one of the associated primes of M ; but in fact, for any m 6= 0, if Ann m is not prime,
then by looking at an ideal maximal in the set of all Ann xm as x runs over the elements
of R such that xm 6= 0, we get a prime ideal containing Ann m and lying in Ass M . It
follows that the union of the primes in Ass M coincides with the set of zero-divisors on
M . Moreover, if an ideal I consists solely of zero-divisors on M , then I lies in the union
of the primes in Ass M and so by prime avoidance in just one of them. Thus every ideal
of R either contains a non-zero-divisor on M or annihilates a nonzero element of M . A
similar argument using finiteness shows that Ass M commutes with localization: if S is
any multiplicatively closed subset of R, then Ass MS consists exactly of the prime ideals
PS such that P ∈Ass M and P ∩ S = ∅.

Next we look at the behavior of primary decomposition for graded modules over
graded rings. the basic result states that if R = ⊕Ri is graded Noetherian and M = ⊕Mi

is a finitely generated graded R-module, then any ideal P = Ann m for m ∈ M that is
prime is homogeneous and equal to the annihilator of a homogeneous element. To prove
this write any f ∈ R as

∑s
i=1 fi, where fi ∈ Rdi

and d1 < · · · < ds. If f ∈ P we
will show that f1m = 0; by induction this will show that P is homogeneous. Write m
as

∑t
i=1 mi with mi ∈ Mei and e1 < · · · < et. Argue by induction on t. First, fm

is the sum of f1m1 and terms of higher degree, so f1m1 = 0. Then f1m is a sum of
fewer homogeneous terms than m, so by induction its annihilator I is homogeneous. If
P = I, then we are done; otherwise choose g ∈ I, g /∈ P ; then gf1 ∈ P but g /∈ P ,
so f1 ∈ P , as desired. Now since P is homogeneous we have Pmi = 0 for all i. But
then P ⊃ ∩i Ann mi, P = ∩i Ann mi ⊃

∏
i Ann mi and by primeness P = Ann mi for

some i, as claimed. It follows that all associated primes of any such graded module are
homogeneous, a primary decomposition of any graded submodule can be given using only
graded submodules, and we can filter any such module M as M0 = 0 ⊂ . . . ⊂Mn = M in
such way that the quotients Mi/Mi−1

∼= R/Pi have Pi homogeneous (as already observed
last quarter).

Finally, we look at symbolic powers P (n) of prime ideals P , as defined in the last
lecture, and say how they behave in algebraic geometry while also computing an explicit
example where P (2) is strictly larger than P 2. If K is an algebraically closed field and P
is a prime ideal in K[x1, . . . , xn] corresponding to a subvariety V of Kn, then it is known
that P (n) consists exactly of the elements f of the coordinate ring K[V ] vanishing to order
at least n at every point of V , in the sense that f ∈ Mn for the maximal ideal M of
K[V ] corresponding to any point of V . Thus P (n) indeed contains Pn but can be strictly
larger. For a “naturally occurring” example where this happens, take xij for 1 ≤ i, j ≤ 3
to be a set of independent variables and K an algebraically closed field. Form the generic
matrix G whose ij-th entry is xij . The radical P of the ideal I2(G) generated by all the
2 × 2 minors of G is prime, as its corresponding variety V is the set of all 3 × 3 matrices
over K of rank at most 1 and we can realize V as the closure of the image of the product
X = GL3(K) × GL3(K) under the morphism f sending a pair (g, h) in this product to



gmh, where m is a fixed 3× 3 matrix over K of rank 1, and GL3(K) is a principal Zariski-
open subset of K9 (defined by the nonvanishing of the determinant) and so is (isomorphic
to) an irreducible affine variety. Thus V is irreducible, as a decomposition of it into proper
closed subsets would decompose X ×X into proper closed subsets (by applying f−1) and
X×X is irreducible. (In fact I2(G) is already prime, being equal to its radical, but we will
not need this result.) Now we claim that g = detG lies in P (2); clearly it does not lie in P 2

as it is homogeneous of degree 3 but P 2 is spanned by homogeneous polynomials of degree
at least 4. To show that g ∈ P (2), it suffices to show that x11g ∈ I2(G)2, since clearly
x11 /∈

√
I2(G). Multiplying the second and third columns of G by x11 and row-reducing,

we see that x2
11g is the product of x11 and a 2× 2 determinant of matrix whose entries are

2×2 minors of G, so x11g lies in I2(G)2, as claimed. (Note that this result agrees with the
characterization of symbolic nth powers of prime ideals in polynomial rings above, since
the partial derivatives of detG with respect to each of its variables are 2 × 2 minors of
G, so lie in I2(G)). In fact it can be shown that P (2) is generated by P 2 and g in this
case; there are more general formulas for the symbolic powers of prime ideals generated by
minors of generic matrices of any fixed size.


