
LECTURE 4-12

Following Chapter 8 of Atiyah-Macdonald, we now turn attention to an important
but very special class of commutative rings, analogous to but even more special than
the Dedekind domains we studied last quarter. Call ring R Artinian if it satisfies the
descending chain condition on ideals, or equivalently if every nonempty set of ideal has a
minimal element. If R is Artinian and x ∈ R is not a zero divisor, then the descending
chain (x) ⊃ (x2) ⊃ . . . must stabilize, say at (xn), and then we must have xn = xn+1y for
some y ∈ R, forcing xy = 1, since x is not a zero divisor. Thus every non-zero-divisor is
a unit and in particular a prime ideal in an Artinian ring must be maximal. Next look at
the set of all finite intersections ∩iMi of maximal ideals Mi; if ∩ni=1Mi is a minimal ideal
among these, then any maximal ideal M must contain this intersection (lest there be an
even smaller one), forcing M to contain and thus equal Mi for some i. Thus an Artinian
ring has only finitely many maximal ideals, and thus only finitely many prime ideals.
Letting N be the nilradical (the intersection of the prime ideals), the descending chain
N ⊃ N2 ⊃ . . . again stabilizes, say at Nk = Nk+1. If Nk+1 6= 0, then there is x ∈ N with
Nkx minimal nonzero (among all nonzero Nkz as z runs over N); since Nk+1x = Nkx 6= 0,
there is y ∈ N with Nkyx 6= 0, whence minimality forces Nkyx = Nkx 6= 0. Multiplying
by a power of y on the left, we get Nkynx = Nkx 6= 0 for all n; but we must have
yn = 0 for some n since N (the radical of the 0 ideal) consists of nilpotent elements. This
contradiction forces N to be nilpotent. Now if M1, . . . ,Mn are the maximal ideals of our
Artinian ring R, then we have Mk

1 · · ·Mk
n = 0 for some k. The sum of any Mk

i and the
product of the kth powers of the others does not lie in any maximal ideal, so must be the
whole ring; applying the Chinese Remainder Theorem, we see that the intersection of the
Mk

i , like their product, must be 0, and R is the direct sum of its quotients R?Mk
i , each of

which is an Artinian local ring.
Thus any Artinian ring is a finite direct product of Artinian local rings R/Mk. Now

the descending chain condition on ideals of R is inherited by its subquotients M i/M i+1

for 0 ≤ i ≤ k − 1, whence each of these subquotients must be a finite-dimensional vector
space over the field R/M . But this guarantees that ideals in each quotient also satisfy
the ascending chain condition, so any Artinian ring is also Noetherian. Conversely, a
Noetherian ring of dimension 0 (so that all prime ideals are maximal) is Artinian, for then
the 0 ideal is a finite intersection of primary ideals, each of them having maximal radical
and containing a power of that radical, whence we see as above that any such ring is a
finite direct product of local rings with the same properties and we can imitate the above
discussion to see that R is Artinian.

In particular if a radical ideal I of K[x1, . . . , xn] is such that K[[x1, . . . , xn]/I Artinian
(for K algebraically closed) then I is the product of finitely many distinct maximal ideals,
so that its associated variety consists of finitely many points; the quotient is the direct
product of finitely may copies of K. Such quotients are of course not very interesting
either algebraically or geometrically in and of themselves, but what is more interesting to
observe is that Artinian rings can still be singular. Indeed, the easy examples of Z/(pn)
for p a prime and K[x]/(xn) (or its localization K[[x]]/(xn) are both singular. In fact,
the only nonsingular Artinian local rings are fields (since the maximal ideal M must be
such that M/M2 = 0,M = M2 = 0 by Nakayama’s Lemma). The above examples arise



as quotients of the discrete valuation rings Zp (the p-adic integers, in this context) and
K[[x]] that we have seen earlier; both of these rings are also complete. If the maximal
ideal M of an Artinian local ring R is principal, say generated by x ∈ R, then every
nonmultiple of x in R is a unit, whence every element of R takes the form xnu, where u
is a unit. Such rings behave very much like discrete valuation rings, but with the crucial
difference that the generator x of the maximal ideal is nilpotent. It is also possible for the
maximal ideal in an Artinian local ring to require arbitrarily many generators, e.g. the
quotient K[x1, . . . , xn]/Mk, where M is the augmentation ideal (x1, . . . , xn) generated by
the variables.

So powerful is the descending chain condition that it has many important consequences
even for noncommutative rings. We call a noncommutative ring R Artinian if it satisfies
the descending chain condition on left ideals; it turns out that it is equivalent to impose
this condition on right ideals. The analogue of the Jacobson radical (the intersection of the
maximal ideals) for such a ring (and indeed for any noncommutative ring) is again called
the Jacobson radical and is the intersection of the annihilators Ann M of the irreducible
right modules (which turns out to coincide with the intersection of the annihilators of
the irreducible left modules). This radical is again nilpotent for Artinian rings, by an
argument quite similar to the commutative case; if it is 0, we call the ring semisimple. A
semisimple Artinian ring R s then a finite direct product of matrix rings over division rings;
the main example, studied in the fall, is the group algebra of a finite group over a field
K of characteristic 0. If R is a finite-dimensional K-algebra with K algebraically closed,
then the division rings occurring in the decomposition are all isomorphic to K itself, as we
saw earlier for complex group algebras.


