
LECTURE 4-17

Following Chapter 6 of Eisenbud, we now study families of algebras depending on a pa-
rameter and ask under what conditions they behave “nicely” (roughly meaning uniformly)
with respect to this parameter. More precise, let R and S be rings with S and R-algebra,
so that we have a ring homomorphism R→ S. For M a maximal ideal in R we define the
fiber over M to be the R/M -algebra S/MS; more generally, for P a prime ideal in R we
define the fiber S(P ) of S over P to be the algebra K ⊗R S, where K is the quotient field
of R/P . We want to study the dependence of K ⊗R S on P . We begin by looking at some
simple examples; in all of them we take R to be k[t], the polynomial ring in one variable
over an algebraically closed field k. Obviously the nicest situation occurs when R = S; in
this case all fibers S(P ) for P maximal are isomorphic to k, while the fiber S(0) is the
rational function field in one variable over k. While S(0) is clearly infinite-dimensional
over k and thus much bigger in one sense than the S(P ) for P nonzero, the dimension of
any fiber S(P ) as a ring is 0, so for our purposes we regard the fibers as uniform. Next
we take S to be R[x]/(x2 − t). In this case the fiber over (t− a) is k[x]/(x2 − a), which is
isomorphic to k⊕k if a 6= 0 and to k[x]/(x2) if a 6= 0. The fiber over (0) is k(t)[x]/(x2− t),
an extension of degree 2 of the residue field k(t). Thus in all cases the fibers have degree 2
over the residue field; this is not surprising as S itself is free over R of rank 2. By contrast,
take S to be R[x]/(tx− t). Here the fibers vary wildly: if the prime P does not contain t,
then t is a unit in K and S(P ) = K, but if P = (t), then S(P ) = k[x], so now the fibers
do not all have the same dimension.

The key property of S that is present in the first two examples but not the last one is
flatness. Let R be any ring. Recall that an R-algebra, or more generally an R-module M ,
is flat if and only if tensoring with M is an exact functor from R-modules to R-modules.
Since the only possible obstruction to exactness occurs at the left end of a short exact
sequence, it is equivalent to require that the induced map M ⊗R N ′ → M ⊗R N is an
injection whenever we have an injection N ′ → N of R-modules. In fact, as we saw in the
fall, it is enough to require that the multiplication map I ⊗R M →M be an injection for
every finitely generated ideal I of R. We also learned in the fall that projective modules
are flat. The definition of localization for rings and modules shows that any localization
of R is flat as an R-module.

There is a precise way to measure how far a general R-module is from being flat, or
equivalently the failure of exactness of tensoring with the module. Given R-modules M,N ,
we define their Tor groups TorRi (M,N) by starting with a projective (in particular a free)
resolution Pi → . . . → P0 → M , tensoring the Pi with N , and then taking homology, so
that TorRi (M,N) is the kernel of the map from Pi ⊗ N to Pi−1 ⊗ N (taking P−1 to be
0) modulo the image of the map from Pi+1 ⊗N to Pi ⊗N . (If R is noncommutative, as
we allowed it to be in the fall, then we lose the R-module structure on the Tor groups,
which are just abelian groups, but if as here R is commutative, then the Tor groups retain
the R-module structure. These groups are analogous to the Ext groups we defined in
the fall.) In particular, if x ∈ R is a non-zero-divisor and M a free R-module, then an
obvious free resolution of the quotient R′ = R/(x) shows that Tor0(R′,M) = M/xM ,
Tor1(R′,M) = {m ∈ M : xm = 0}, while Tori(R

′,M) = 0 for i ≥ 2. Thus Tor0(M,N)
(we omit the ring R from the notation if it is understood from context) is just M ⊗ N



itself while the other groups Tori(M,N) are to be regarded as higher derived functors of
the tensor product. If R is Noetherian and M,N are finitely generated, then so are the
Tor groups as R-modules. Given a short exact sequence 0 → M ′ → M → M” → 0 of R-
modules, we get a long exact sequence Tori(M

′, N)→ Tori(M,N)→ Tori(M”, N)→ . . .
Tor1(M”, N)→M ′ ⊗N →M ⊗N →M”⊗N → 0. The R-module M is flat if and only
if Tor1(R/I,M) = 0 for every finitely generated ideal I of R.

Thus in particular if x is a non-zero-divisor in R and M is flat over R, then x must
not be a zero divisor on M , for then the injection R → (x) given by multiplication by x
must remain an injection upon tensoring with M This explains why the R-algebra S in
our third example is not flat over R, as t ∈ R becomes a zero divisor in S; by contrast, if
we set S = R[x]/(tx − 1), then S is a localization of R and so flat over it. If R is a PID,
then the above computation of Tor1(R/(x),M) shows that M is flat if and only if M is
torsion-free.


