
LECTURE 4-3

We now prove Hensel’s Lemma: given a complete ring R with respect to an ideal I and
f ∈ R[x] such that f(a) ∼= 0 mod f ′(a)2I, there is b ∈ R with f(b) = 0, b ∼= a mod f”(a)I
and this b is uniquely determined if f ′(a) is a non-zero-divisor in R. Set f ′(a) = e. then
there is h(x) ∈ R[x] such that f(a+ex) = f(a)+f ′(a)ex+h(x)(ex)2 = f(a)+e2(x+x2h(x)).
There is then a ring homomorphism φ from R[[x]] to itself that is the identity on R and
sends x to x + x2h(x), which is in fact an isomorphism, since the coefficient 1 of x is
a unit. Applying φ−1 we get f(a + eφ−1(x)) = f(a) + e2x. By hypothesis we have
f(a) = e2c for some c ∈ I. Then there is an algebra homomorphism ψ from R[[x]] to R
that is the identity on R and sends x to −c. Applying it, we get f(a + eψφ−1(x)) = 0,
so b = a+ eψ(φ−1(x)) is our desired element. Next suppose that e is a non-zero-=divisor
and b, b1 are roots of f differing from a by elements of eI, say b = a + er, b1 = a + er1
with r, r1 ∈ I. Then there are ring homomorphisms β, β1 from R[[x]] to R that are the
identity on R and send x to r, r1, respectively. Applying them to the above formulas we get
0 = f(a) + e2(r+ r2h(r)) = f(a) + e2(r1 + r21h(r1)). Subtracting and using the assumption
that e is a non-zero-divisor we get r + r2h(r) = r1 + r21h(r1), whence βφ(x) = β1(φ(x).
By the uniqueness of β, β1, we get βφ = β1φ and then β = β1, since φ is an isomorphism.
Hence r = r1, as desired.

You will prove the classical version of Hensel’s Lemma in upcoming homework: let R
be a complete with respect to an ideal I and let F (x) ∈ R[x], f(x) its reduction mod I.
If f(x) factors in R/I[x] as g1g2 with g1 monic and g1, g2 generating the unit ideal, then
there is a unique factorization F (x) = G1G2 in R[x] G1 monic and G1, G2 reducing to
g1, g2, respectively, in R/i[x].

We now briefly return to algebraic geometry, treating one more topic in the first
chapter of Hartshorne. Let V,W be affine varieties with coordinate rings R,S and let
P,Q be points of V,W , respectively, corresponding to maximal ideals M,N of R,S. We
say that P,Q are analytically isomorphic if the localized rings RM , SN become isomorphic
when completed at M,N , respectively. As an example, let V be the nodal cubic curve in
K2 (K algebraically closed) with equation y2 = x2(x+ 1), let P be the origin, and let W
be the reducible variety with equation xy = 0 wit Q again the origin. Then the varieties V
and W are of course far from isomorphic and the points P,Q look rather different in these
varieties, but nevertheless P and Q are analytically isomorphic. To prove this we must
show that the quotient K[[x, y]]/(y2−x2−x3) is isomorphic to the quotient K[[x, y]]/(xy).
The key point is that the leading term y2 − x2 of y2 − x2 − x3 factors as (y − x)(y + x)
and the two factors y − x, y + x are linearly independent. Now we claim that there are
power series g, h with g = y + x+ g2 + g3 + . . . , h = y − x+ h2 + h3 + . . . with the gi, hi
homogeneous of degree i, such that y2 − x2 − x3 = gh. We construct them (as usual) step
by step. To determine g2, h2 we must have (y− x)g2 + (y + x)h2 = −x3, which is possible
since y−x, y+x generate the unique maximal ideal of K[[x, y]]; similarly we can construct
g3, h3, and so on. Hence the completed localization V̂M is isomorphic to K[[x, y]]/(gh).
but now g, h begin with linearly independent linear terms, so by a small extension of a
previous result on isomorphisms from a power series ring to itself there is an automorphism
of K[[x, y]] sending g, h to x, y, respectively. Hence K[[x, y]]/(y2−x2−x3) ∼= K[[xy]]/(xy),
as desired; analytically, the singularity of V at P looks like that of two lines crossing; note



also that the coordinate ring R and its localization RM are integral domains, but the
completion R̂M is not. More generally, given any curve X in K2 defined by the equation
f(x, y) = 0 containing (0, 0), so that f has zero constant term, write f as fr + fr+1 + . . .
with the fi homoogeneous of degree i and fr 6= 0. By algebraic closure of K, fr factors as
the product of r linear terms; if none of these is a multiple of another, then we say that
(0, 0 is an ordinary r-fold point of X. Then any two ordinary double points of any two
curves are analytically isomorphic, by an argument similar to the above, as (it turns out)
are any two ordinary triple points of any two curves. But the same is not true for any two
4-fold points. To see why, recall that nonzero linear combinations of the variables x and
y, up to nonzero scalar multiple, are in bijection to the elements of P1, projective 1-space
over K. The automorphism group PSL2(K) acts on this P1 3-transitively, i.e. in a such
way that given any six elements a1, a2, a3, b1, b2, b3 of P1 with the ai and bi distinct, there
is a unique automorphism of P1, arising from an element of PGL2(K) sending the ai to
the bi, but precisely because this automorphism is unique, the image of any a4 ∈ P1 under
it, is uniquely determined. Thus there is a one-parameter family of orbits of homogeneous
polynomials fr in x, y of degree 4 under the action of PGL2(K), and accordingly a one-
parameter family of ordinary 4-fold singular points of curves up to analytic isomorphism.


