LECTURE 4-7

We now give the definition of primary submodule in a general context, following Chapter 4 of Atiyah-Macdonald (including the exercises in this chapter). Let M be any module over any ring R. Call a submodule N of N primary if every zero-divisor on M / N is nilpotent, where $x \in R$ is (defined to be) a zero-divisor on M / N if there is $y \in M / N, y \neq 0$ with $x y=0$, while x is nilpotent if there is an integer k with $x^{k}(M / N)=0$. By the binomial theorem, which holds for any commutative ring, the set of nilpotent element in R on any fixed module M^{\prime} is an ideal; if this coincides with the set of zero-divisors on M^{\prime}, this ideal is prime. We therefore more precisely call $N P$-primary if it is primary and the set of zero-divisors on M / N is the prime ideal P. It is not difficult to check that if M is finitely generated and R is Noetherian, then a P-primary submodule in this sense is the same as a P-primary module in the earlier sense (but not in general). It is easy to check that a finite intersection of P-primary submodules is again P-primary, so given a submodule N that is a finite intersection $\cap N_{i}$ of primary submodules then we can combine terms and assume that each N_{i} is P_{i}-primary where the P_{i} are distinct primes. We may further assume, omitting terms as necessary, that no N_{i} contains the intersection of the others. The prime ideals P_{i} are said to belong to N; recall that the minimal primes among the P_{i} are called isolated and the others embedded.

Call a submodule N of M decomposable if it has a primary decomposition, i.e. it is the intersection of finitely many primary submodules (called its primary components). In general, submodules are not decomposable, but we have seen that any submodule of a finitely generated module over a Noetherian ring is decomposable. Even when they exist, primary decompositions need not be unique; but it turns out that they satisfy two important uniqueness properties. First, given a submodule N realized as in the previous paragraph as a finite intersection $\cap N_{i}$ where the submodule N_{i} is P_{i}-primary, the P_{i} are distinct prime ideals, and no N_{i} contains the intersection of the others, then the set of prime ideals P_{i} arising in this way (both isolated and embedded ones) is uniquely determined by N. To see this we may pass to the quotient and assume that $N=0$. Then the annihilator $I(m)$ of m is the intersection of the annihilators $I_{i}(m)$ of the images of m in the quotients M / N_{i} and in turn the radical $\sqrt{I(m)}$ is the intersection of the radicals $\sqrt{I_{i}(m)}$. If $\sqrt{I(m)}$ is prime, this forces it to coincide with P_{i} for some i; conversely any P_{i} arises as $\sqrt{I(m)}$ for any m chosen to lie in the intersection of the N_{j} for $j \neq i$ but not in N_{i}. Hence the P_{i} are exactly the prime ideals of the form $\sqrt{I(m)}$ for $m \in M$ and so are determined by M alone; note that this result also gives us some idea of where to look for submodules N_{i} that could realize the submodule N as decomposable (having a finite primary decomposition), if we do not yet know whether N is decomposable or not.

The other uniqueness result pertains to the isolated primes Q_{1}, \ldots, Q_{j} among the P_{i} : the primary component N_{i} of N corresponding to any Q_{i} is uniquely determined by N. This follows since it is easy to check that the localization N_{S} of any P-primary submodule N of M by a multiplicatively closed subset S of R is 0 if S meets P, while otherwise it is an $S^{-1} P$-primary submodule of $S^{-1} M$ intersecting M in N. Hence by localizing N by the complement of any isolated prime belonging to it and intersecting with M we recover the corresponding isolated component uniquely.

The failure of the embedded components to be unique is illustrated rather graphically by the following simple example. Let $R=K[x]_{(x)}$ be the localization of the polynomial ring $K[x]$ in one variable x over a field K at the complement of the prime ideal (x) and set $M=R \oplus R /(x)$. Here there are just two associated primes of M, namely 0 and (x); the isolated component of 0 in M is uniquely determined as $R e$, where e is a generator of the second summand. Even if we restrict to embedded components of M that are as large as possible, we find that the submodule generated by $(1, u e)$ for any $u \in K$ can be taken to be an embedded component; clearly no choice of such a component can be canonical as one can send any choice to any other by an automorphism of R.

Turning now to ideals in R, we find that any ideal I whose radical M is maximal in R is M-primary, for in this case the image of M in R / I is the only prime ideal and R / I consists only of units (not in this image) and nilpotent elements in it, so that every zero divisor is nilpotent. But in general even the powers P^{n} of a prime ideal P need not be P-primary; for example, if R is the quotient $K[x, y, z] /\left(x y-z^{2}\right)$, then the images $x z$ of $x, z \in R$ generate a prime ideal P but $x y=z^{2} \in P^{2}$ and $x, y^{n} \notin P$ for any n, since $y \notin \sqrt{P^{2}}=P$. Instead the powers P^{n} of P have P-primary components not equal to P^{n} in general; in the above case $P^{2}=(x) \cap(y, z)$ is a primary decomposition with P-primary component (x). We denote the P-primary component of P^{n} by $P^{(n)}$ and call it the nth symbolic power of P.

