LECTURE 5-10

We continue with proving the result stated last time. Let I be an invertible ideal; we must show that it embeds into $K(R)$. We know that $K(R)$, as an Artinian ring, is semilocal; that is, it has only finitely many maximal ideals, these all taking the form $P K(R)$, where P is a maximal associated prime of R. For every such P, we have $I \otimes K(R)=$ $I_{P} \cong R_{P} \cong K(R)_{P K(R)}$. By Exercise 4.13 (to be included in next week's HW) this forces $I \otimes K(R) \cong K(R)$. Next we show that the localization map $\phi: I \rightarrow K(R) \otimes I=I_{U}, U$ the set of non-zero-divisors in R, is injective; to do this it is enough to show that it is injective when localized at a maximal ideal P. The map ϕ_{P} is the localization map sending I_{P} isomorphically onto R_{P} and then to $K(R) \otimes R_{P}=\left(R_{P}\right)_{U}$; as the element of U are not zero divisors, ϕ_{P} is injective, as required. The map $I \rightarrow K(R) \otimes I \cong K(R)$ is the desired embedding; we have already seen that I is finitely generated. Now suppose that $I \subset K(R)$ is a finitely generated fractional ideal such that $I \cap R$ consists of zero divisors. Because I is finitely generated, there is a non-zero-divisor $u \in R$ such that $u I \subset R \cap I \subset R \subset K(R)$. Since $I \cap R$ consists of zero divisors, there is a nonzero $b \in R$ annihilated by $R \cap I$ and thus by $u I$. Then I is annihilated by $u b$; localizing at a prime P containing the annihilator of $u b$, we find that $I_{P} \not \not R_{P}$, so I is not invertible.

Next let $I, J \subset K(R)$ be invertible. We first show that the natural surjection $I \otimes J \rightarrow$ $I J$ is injective. It suffices to show that for any prime P of R the map $I_{P} \otimes_{R_{P}} J_{P} \rightarrow$ $(I J)_{P} \subset K(R)_{P}$ is injective. Now $K\left(R_{P}\right)$ is a localization of $K(R)_{P}$ and it suffices to show that the composite map to $K\left(R_{P}\right)$ is injective. Thus we may assume from the outset that R is local. In this case $I \cong J \cong R$, so I and J are generated as R-modules by non-zero-divisors $s, t \in K(R)$, whence st is a non-zero-divisor. The composite map $R \cong R \otimes R \cong I \otimes J \rightarrow I J=R s t \subset K(R)$ is then multiplication by st and so indeed injective. Next we show that the natural map $I^{-1} J \rightarrow \operatorname{hom}_{R}(I, J)$ sending t to ϕ_{t} is an isomorphism. By the previous part we can find a non-zero-divisor $v \in R \cap I$. If t is a nonzero element of $I^{-1} J$, then $t v \neq 0$, so t induces a nonzero element of $\operatorname{hom}_{R}(I, J)$ and the map $I^{-1} J \rightarrow \operatorname{hom}_{R}(I, J)$ is one-to-one. To show that it is onto, let $\phi \in \operatorname{hom}_{R}(I, J)$ be arbitrary and set $\phi(v)=w$. We claim that $\phi=\phi_{w / v}$; in fact, we claim that if any two homomorphisms ϕ, ψ from I to $K(R)$ agree on v, then they coincide; it suffices to show that this true after localization. The element v corresponds to a non-zero-divisor in R_{P} under the isomorphism $I_{P} \cong R_{P}$. The localizations ϕ_{P}, ψ_{P} may then be regarded as homomorphisms from R_{P} to $K(R)_{P}$ agreeing on the non-zero-divisor v. But then they must agree on 1 , so everywhere.

Finally, let $I \subset K(R)$ be an invertible module. By the previous part the isomorphism $I^{*} \otimes I \rightarrow R$ may be identified with the multiplication map $I^{-1} \otimes I \rightarrow R$, so $I^{-1} I=R$. Conversely, if $I \subset K(R)$ is an R-submodule with $I^{-1} I=R$, then we can localize, supposing that R is local with maximal ideal P; we must show that $I \cong R$. By hypothesis there is $v \in I^{-1}$ with $v I \not \subset P$, forcing $v I=R$. But then v is not a zero divisor, so multiplication by v is an isomorphism from I to R.

Since the tensor product is associative, the set of isomorphism classes of invertible
R-modules forms a group under the tensor product, with the identity being the class of R and inverse of the class of I being that of I^{*}. This group is called the Picard group of R and is denoted $\operatorname{Pic}(R)$. Similarly, the set of invertible submodules of $K(R)$ is a group under multiplication, with the inverse of I being I^{-1}. This is called the group of Cartier divisors of R and is denoted $C(R)$. Thanks to the second part of the last theorem, the natural map $C(R) \rightarrow \operatorname{Pic}(R)$ is surjective; it takes the principal divisor generated by any unit of $K(R)$ to the identity. We have $R u=R v$ if and only if u, v differ by a unit in R, so the group of principal divisors under multiplication is identified with the quotient group $K(R)^{*} / R^{*}$. If I is an invertible divisor (= invertible module) and $R u$ a principal visiro, then $(R u) I=u I$. We now claim that that if $I, J \subset K(R)$ are invertible divisors and if $\phi: I \rightarrow J$ is an isomorphism, then $I=u J$ for some $u \in K(R)^{*}$. Since $\operatorname{hom}_{R}(I, J)=I^{-1} J$, any such ϕ is certainly multiplication by some $u \in K(R)$; similarly its inverse is multiplication by some $v \in K(R)$. Since I contains a non-zero-divisor, the product $u v$ must equal 1 , so u, v are indeed units in $K(R)$. Hence the kernel of the natural map $C(R) \rightarrow \operatorname{Pic}(R)$ is isomorphic to $K(R)^{*} / R^{*}$. Moreover, the group $C(R)$ is generated by the invertible ideals of R, for if $I \subset K(R)$ is invertible, then I^{-1} contains a non-zero-divisor $a \in R$, forcing $a I \subset R, I=a I(a)^{-1}$.

