LECTURE 5-15

Continuing with Chapter 11, we begin with the elementary observation that if $\operatorname{dim} R=$ 1 , then for any non-zero-divisor $a \in R$ the quotient ring $R /(a)$ has dimension 0 and thus finite length. Hence we have a map $a \rightarrow \ell(a)$ sending a non-zero-divisor $a \in R$ to the length $\ell(a)$ of the quotient $R /(a)$ as an R-module. We will soon see that this extends to a homomorphism from $K(R)^{*}$ to \mathbb{Z} (but it is not in general a valuation). Our main result is the following: for any Noetherian ring R there is a map $\phi: C(R) \rightarrow \operatorname{Div}(R)$ sending an invertible ideal I of R to

$$
\phi(I)=\sum_{P} \ell\left(R_{P} / I_{P}\right) P
$$

where the sum runs over all codimension-one primes of R containing I, but has only finitely many nonzero terms. If $\operatorname{dim} R=1$, then there is a map $C(R) \rightarrow \mathbb{Z}$ sending an invertible ideal I to $\ell(R / I)$

We begin with the general remark that given abelian groups G, H and a subset S of G that generates G, to define a homomorphism π from G to $H \mathrm{H}$ it is enough to define π on S in such a way that the products of its images of the elements of any two finite subsets of S with the same product in G are the same (one checks immediately that π extends uniquely to G and respects both products and inverses there). In the current situation we know that the set S of invertible ideals in R generates $C(R)$, so it is enough to show that the recipe above defines $\phi(I)$ for any $I \in S$ in such a way that it respects products. Let $I \in S$ and let P be a codimension-one prime in R. The localization R_{P} / I_{P} is onedimensional and I_{P} contains a non-zero-divisor, so R_{P} / I_{P} is 0-dimensional and indeed has a finite length $\ell\left(R_{P} / I_{P}\right)$. If $I \not \subset P$, then $\ell\left(R_{P} / I_{P}\right)=0$; if $I \subset P$, then P must be one of the finitely many minimal primes over I, so the sum is indeed finite. To show that ϕ respects products, suppose that $I=\prod_{j} I_{j}$ with the I_{j} invertible ideals in R. We must show that the for every codimension-one prime P we have $\ell\left(R_{P} / I_{P}\right)=\sum_{j} \ell\left(R_{P} /\left(I_{j}\right)_{P}\right.$. To simplify the notation we may assume that R itself is local and one-dimensional. Then each I_{j} becomes principal, generated by a non-zero-divisor $a_{j} \in R$. We have the filtration $R \supset\left(a_{1}\right) \supset\left(a_{1} a_{2}\right) \supset \cdots \supset\left(\prod_{j} a_{j}\right)$; since each a_{i} is a non-zero-divisor, it is easy to check that the successive quotients are isomorphic to the quotients $R /\left(a_{i}\right)$, so the lengths of these add as required. This proves the first statement. To prove the second, we observe that any R-module of finite length (as any quotient R / I does with I nonzero) admits a finite filtration with graded pieces all of the form R / M_{i} for some maximal ideal M_{i}. Last quarter, we saw that the number of times that R / M appears for any fixed M is independent of the filtration, is 0 for all but finitely many M, and if summed for all M as in the right-hand side, gives the length of the module, as required.

If $a \in K(R)^{*}$ then we call the image $\phi(a)$ of a under ϕ principal (as a divisor); the group of divisors modulo principal divisors is called the codimension-one Chow group of R and is denoted Chow (R). (More generally, the quotient of the free abelian group on the codimension- i primes by the subgroup generated by principal divisors modulo codimension$i+1$ primes is called the i th Chow group of $R)$. Thus we have a map $\psi: \operatorname{Pic}(R) \rightarrow$

Chow (R). This map is an isomorphism whenever R is locally factorial (i.e. its localizations are UFDs), but in general ψ need not be either injective or surjective. If R is a normal Noetherian ring, the maps $\phi: C(R) \rightarrow \operatorname{Div}(R)$ and $\psi: \operatorname{Pic}(R) \rightarrow \operatorname{Chow}(R)$ are injective, by a simple application of the snake lemma in homological algebra combined with the total order on ideals in a DVR. Probably the simplest example where ψ is not injective occurs when R is an old friend we have visited repeatedly this year, namely the coordinate ring of the variety defined by the equation $y^{2}-x^{3}=0$ (see Exercise 11.17, on the homework for next week; here the problem as usual is that R is not normal so not a Dedekind domain.

We conclude with a lemma about torsion-free modules M over one-dimensional Noetherian domains R. Any such module M has a rank $r(M)$, defined to be the dimension of $M \otimes_{R} K$ over the quotient field K of R, or equivalently the maximum number of R-linearly independent elements of M. The lemma states that $\ell(M / x M) \leq r(M) \ell(R /(x))$ for any $x \in R, x \neq 0$; we will prove it next time.

