
LECTURE 5-19

A remarkable consequence of the finiteness of the integral closure for affine domains
(proved last time) is the following: Let k be an algebraically closed field of characteristic 0.
The algebraic closure of the field k((x)) of Laurent series over k is the union over all positive
integers n of the fields k((x1/n)), and the integral closure of k[[x]] in k((x1/n)) is k[[x1/n]]..
Indeed, if L is a finite extension of k((x)), then it suffices to show that the integral closure
T of k[[x]] in L takes the form k[[x1/n]] for some n, so that L = k((x1/n)). We know that
T is finite over k[[x]]. It follows from a simple corollary (7.6) to a consequence of Hensel’s
Lemma (p. 190, §7.3 of the 2004 edition of Eisenbud) that T is a direct product of complete
local domains. Since T is itself a domain, it must be complete and local, and of dimension
one since it is an integral extension of a ring of dimension one. Hence T is a DVR. Write
π for a generator of its maximal ideal. For some n we must have x = uπn, with u a unit
of T . The residue field (quotient by the maximal ideal) of T is finite over k, hence equal
to k since k is algebraically closed; it also follows that the image u of u in T/(π) has an
nth root v. Since the characteristic of k is 0, the polynomial tn − u has a simple root v,
so Hensel’s Lemma implies that u lifts to an nth root v of u in T . Letting π′ = vπ, we
see that π′ is an nth root of x in T . The map k[[x′]] → T sending x′ to vπ is then onto
by Theorem 7.16 in Eisenbud (proved earlier in class) and must be an isomorphism since
dimT = 1, so the result follows. As an immediate corollary we get that any polynomial
equation f(x, y) = 0 in two variables over an algebraically closed field of characteristic 0
admits solutions of the form y = p(x1/n) for some Laurent series p, which may be taken to
be a power series if f is monic in y. If in addition f(0, 0) = 0, then y may be written as a
power series in x1/n without constant term. Indeed, the irreducible factors of f(x, y) = 0
over k((x)) must have roots y in some finite extension k((x1/n)). If f is monic in y then
these roots are integral and lie in k[[x1/n]]. If in addition f(0, 0) = 0 then at least one of
the roots must reduce mod x to 0 and thus lie in the maximal ideal of k[[x1/n]].

The two most striking properties of affine domains not shared by general commutative
rings are firstly that their dimensions are also given by the transcendence degrees (maxi-
mum number of algebraically independent elements over the basefield k) of their quotient
fields (this follows from Noether normalization), and secondly that they are universally
catenary in the sense that given any prime ideals P,Q with P ⊂ Q, then any two maximal
chains of prime ideals from P to Q (i.e. chains such that one cannot insert any prime
properly between two consecutive elements) have the same length (we proved this last
quarter as part of our discussion of dimension of algebraic varieties). It follows at once
that if R ⊂ T is an inclusion of affine domains over a field k and K is the quotient field of
R, then dimT = dimR+ dimK ⊗R T , since the dimension of R equals the transcendence
degree of K over k, the dimension of K ⊗R T equals the transcendence degree of K ⊗R T
over K, and whenever we have a chain of fields K0 ⊂ K1 ⊂ K2, the transcendence degree
of K2 over K0 is the sum of the transcendence degrees of K1 over K0 and K2 over K1. A
ring-theoretic consequence is a version of Nagata’s altitude formula, stating that if R is a
Noetherian domain, T a finitely generated R-algebra that is also a domain, Q a prime ideal



of T contracting to P ⊂ R, then dimTQ ≤ dimRP + dimK⊗R T , where K is the quotient
field of R; if R is universally catenary and Q is maximal among primes contracting to P ,
then equality holds. For the proof see Theorem 13.8, p. 292, in Eisenbud. We also get a re-
finement of Noether normalization for affine rings: if R is an affine ring of dimension d over
a field k and if I1 ⊂ · · · ⊂ Im is a chain of ideals with dim Ij = dj , d1 > d2 > · · · > dm ≥ 0
(recall that the dimension of an ideal I is by definition the codimension of the quotient
ring R/I), then R contains a polynomial ring S = k[x1, . . . , xd] in such a way that R is
a finitely generated S-module and Ij ∩ S = (xdj+1, . . . , xd) for j = 1 . . . ,m. If the Ii
are homogeneous, then the xi may be taken to be homogeneous. If k is infinite and R is
generated over k by y1, . . . , yr, then for j ≤ dm the element xj may be chosen to be a
k-linear combination of the yi (Theorem 13.3 in Eisenbud). In geometric terms, given a
d-dimensional variety X ⊂ km and a chain of subvarieties of X, there is a finite map from
X to the affine space kd such that the subvarieties are mapped to coordinate planes.


