
LECTURE 5-24

We now sketch a few of the main ideas in Chapter 15. We work throughout with the
polynomial ring S = k[x1, . . . , xn], k a field. We begin with the simple observation that
ideals of S generated by monomials (monomial ideals) are much easier to compute with
than general ones; for example, it is quite easy to compute the greatest common divisor or
least common multiple of any pair of monomials. More generally, if F is a free S-module
with basis {ei}, then submodules of T generated by monomials times basis vectors (called
monomials in F are easier to work with than general submodules. We need a systematic
way to pick out particular monomial terms from elements of F , To this end, we introduce
a monomial order on the monomials of any finitely generated free module F over S; this
is a total order > such that if m1,m2 are monomials of F and if n 6= 1 is a monomial
of S, then m1 > m2 implies nm1 > nm2 > m2. We give three examples; in all of them
the variables are ordered so that x1 > · · · > xn. The first is lexicographic order, in which
m = xa1

1 . . . xan
n < m′ = xb1

1 . . . xbn
n if ai < bi for the first index i for which ai 6= bi;

the next is homogeneous lexicographic order, in which the condition for m < m′ is that
either degm < degm′ or degm = degm′ and m < m′ in the lexicographic order. Finally,
we have reverse lexicographic (revlex) order, in which the condition for m < m′ is that
degm < degm′ or degm = degm′ and ai > bi for the last index i for which they differ.
Note that so far we have ordered only the monomials in S, not those of F ; we supplement
the order by totally ordering the basis vectors as well, and then taking the lexicographic
product of these orders to totally order terms in F . Any monomial order on F is Artinian
in the sense that every nonempty set of monomials has a least element. We extend the
notation to terms (scalar multiples of monomials): if um, vn are terms with u, v nonzero
elements of k, then we decree that um > vn whenever m > n and similarly for ≥. Then
any f ∈ F has an initial term in(f) (with respect to >), which is the >-largest term
occurring in f; likewise any submodule M of F has an initial submodule in(M) generated
by the initial terms of all of its elements. Then an important result of Macaulay asserts
that if F is a free S-module with basis, M a submodule of F , and if > is a monomial order,
then the set B of monomials not in in(M) forms a basis for F/M . Indeed, to show that B
is linearly independent, note that if there were a dependence relation p =

∑
i uimi ∈ M

with the mi ∈ B and the ui nonzero elements of k, then in(p) would lie in in(M). But
in(p) is one of the uimi and mi is in B, this is a contradiction. Now if B did not span
F/M , then among the elements of F not in the span of M and B we could take f to be one
with minimal initial term in(f). If in(f) were in B, we could subtract it from f , getting a
polynomial not in the span with a smaller initial term, a contradiction, so we may assume
that in(f) ∈ in(M). Subtracting an element of M with the same initial term as f results
in a similar contradiction.

A Gröbner basis of a submodule M of a free module F with basis is a set of elements
g1, . . . , gt of M such that in(g1), . . . ,in(gt) generates in(M). Note that if N ⊂ M are
submodules with in(N) = in(M) with respect to a monomial order, then N = M , for
otherwise there would be f ∈ M not in N whose initial term is smallest among initial



terms of elements not in N , and then in(f) = in(g) for some g ∈ N . But then f − g ∈
M,f − g /∈ N , and f − g has smaller initial term than f , a contradiction. Hence any
Gröbner basis is automatically a set of generators (though it may not be minimal as
such). Such bases always exist for any submodule M , as given any set of generators we
may enlarge it to another set whose initial elements generate in(M). A Gröbner basis
g1, . . . , gt is said to be minimal if no initial term of any gi divides the initial term of
another; clearly any Gröbner basis can be shrunk to a minimal one. Now if F is a free S-
module with basis, we have a fixed monomial order <, and we are given g1, . . . , gt, f ∈ F ,
then we can perform the following construction. Supposing inductively that monomials
m1, . . . ,mp in S and elements gs1 , . . . , gsp have been chosen, set f ′ = f −

∑
u mugsu ; if

f ′ 6= 0 and some in(gi) divides a monomial term of f , let m be the greatest such term, set
sp+1 = i,mp+1 = m/in(gi), f” = f ′ −mp+1gi, and continue inductively, relabelling f” as
f ′. The process ends after finitely many steps, either with f ′ = 0 or with no monomial
term of f ′ divisible by in(gi) for any i; we call f ′ the remainder of f (with respect to the
gi) and the expression f =

∑
migi + f ′ standard (note however that it is not uniquely

determined by f and the gi, though we can modify the algorithm to make it unique).
Given a free module F with basis and g1, . . . , gt ∈ F , let g′i be the initial term of gi.
For each pair of indices i, j for which g′i, g

′
j involve the same basis element ek, there are

monomials mij ,mji ∈ S such that gij = mjigi−mijgj has a lower initial term than either
mjigi or mijgj ; let hij be the remainder of gij with respect to the gi, setting hij = 0 if
gi, gj do not involve the same basis element. Then Buchberger’s Criterion asserts that
g1, . . . , gt form a Gröbner basis for the submodule they generate if and only if hij = 0 for
all i and j. As an example, take g1 = x2, g2 = xy + y2 in k[x, y], and order the monomials
lexicographically, taking x > y. The initial terms are x2, xy, whose gcd is x. Applying the
division algorithm to g1, g2, we get yg1 − xg2 = −xy2, whose remainder with respect to
g1, g2 is y3, which is not divisible by either of the initial terms we have, so we add y3 to the
basis. Then g1 = x2, g2 = xy + y2, g3 = y3 is a Gröbner basis. As a bonus, we obtain all
syzygies (relations) among the elements of this basis (Theorem 15.10 in Eisenbud): these
relations are generated by the single one x2g2 − (xy + y2)g1, together with the formula
g3 = yg1+(y−x)g2 that arose from the construction of g3. In fact, every finitely generated
S-module has a resolution by free modules of length at most n (Hilbert’s chain-of-syzygies
theorem).


