LECTURE 5-24

We now sketch a few of the main ideas in Chapter 15. We work throughout with the polynomial ring $S=k\left[x_{1}, \ldots, x_{n}\right], k$ a field. We begin with the simple observation that ideals of S generated by monomials (monomial ideals) are much easier to compute with than general ones; for example, it is quite easy to compute the greatest common divisor or least common multiple of any pair of monomials. More generally, if F is a free S-module with basis $\left\{e_{i}\right\}$, then submodules of T generated by monomials times basis vectors (called monomials in F are easier to work with than general submodules. We need a systematic way to pick out particular monomial terms from elements of F, To this end, we introduce a monomial order on the monomials of any finitely generated free module F over S; this is a total order $>$ such that if m_{1}, m_{2} are monomials of F and if $n \neq 1$ is a monomial of S, then $m_{1}>m_{2}$ implies $n m_{1}>n m_{2}>m_{2}$. We give three examples; in all of them the variables are ordered so that $x_{1}>\cdots>x_{n}$. The first is lexicographic order, in which $m=x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}<m^{\prime}=x_{1}^{b_{1}} \ldots x_{n}^{b_{n}}$ if $a_{i}<b_{i}$ for the first index i for which $a_{i} \neq b_{i}$; the next is homogeneous lexicographic order, in which the condition for $m<m^{\prime}$ is that either $\operatorname{deg} m<\operatorname{deg} m^{\prime}$ or $\operatorname{deg} m=\operatorname{deg} m^{\prime}$ and $m<m^{\prime}$ in the lexicographic order. Finally, we have reverse lexicographic (revlex) order, in which the condition for $m<m^{\prime}$ is that $\operatorname{deg} m<\operatorname{deg} m^{\prime}$ or $\operatorname{deg} m=\operatorname{deg} m^{\prime}$ and $a_{i}>b_{i}$ for the last index i for which they differ. Note that so far we have ordered only the monomials in S, not those of F; we supplement the order by totally ordering the basis vectors as well, and then taking the lexicographic product of these orders to totally order terms in F. Any monomial order on F is Artinian in the sense that every nonempty set of monomials has a least element. We extend the notation to terms (scalar multiples of monomials): if $u m, v n$ are terms with u, v nonzero elements of k, then we decree that $u m>v n$ whenever $m>n$ and similarly for \geq. Then any $f \in F$ has an initial term $\operatorname{in}(f)$ (with respect to $>$), which is the >-largest term occurring in f ; likewise any submodule M of F has an initial submodule in (M) generated by the initial terms of all of its elements. Then an important result of Macaulay asserts that if F is a free S-module with basis, M a submodule of F, and if $>$ is a monomial order, then the set B of monomials not in in (M) forms a basis for F / M. Indeed, to show that B is linearly independent, note that if there were a dependence relation $p=\sum_{i} u_{i} m_{i} \in M$ with the $m_{i} \in B$ and the u_{i} nonzero elements of k, then $\operatorname{in}(p)$ would lie in in (M). But $\operatorname{in}(p)$ is one of the $u_{i} m_{i}$ and m_{i} is in B, this is a contradiction. Now if B did not span F / M, then among the elements of F not in the span of M and B we could take f to be one with minimal initial term $\operatorname{in}(f)$. If in (f) were in B, we could subtract it from f, getting a polynomial not in the span with a smaller initial term, a contradiction, so we may assume that $\operatorname{in}(f) \in \operatorname{in}(M)$. Subtracting an element of M with the same initial term as f results in a similar contradiction.

A Gröbner basis of a submodule M of a free module F with basis is a set of elements g_{1}, \ldots, g_{t} of M such that $\operatorname{in}\left(g_{1}\right), \ldots, \operatorname{in}\left(g_{t}\right)$ generates $\operatorname{in}(M)$. Note that if $N \subset M$ are submodules with $\operatorname{in}(N)=\operatorname{in}(M)$ with respect to a monomial order, then $N=M$, for otherwise there would be $f \in M$ not in N whose initial term is smallest among initial
terms of elements not in N, and then $\operatorname{in}(f)=\operatorname{in}(g)$ for some $g \in N$. But then $f-g \in$ $M, f-g \notin N$, and $f-g$ has smaller initial term than f, a contradiction. Hence any Gröbner basis is automatically a set of generators (though it may not be minimal as such). Such bases always exist for any submodule M, as given any set of generators we may enlarge it to another set whose initial elements generate in (M). A Gröbner basis g_{1}, \ldots, g_{t} is said to be minimal if no initial term of any g_{i} divides the initial term of another; clearly any Gröbner basis can be shrunk to a minimal one. Now if F is a free S module with basis, we have a fixed monomial order $<$, and we are given $g_{1}, \ldots, g_{t}, f \in F$, then we can perform the following construction. Supposing inductively that monomials m_{1}, \ldots, m_{p} in S and elements $g_{s_{1}}, \ldots, g_{s_{p}}$ have been chosen, set $f^{\prime}=f-\sum_{u} m_{u} g_{s_{u}}$; if $f^{\prime} \neq 0$ and some in $\left(g_{i}\right)$ divides a monomial term of f, let m be the greatest such term, set $s_{p+1}=i, m_{p+1}=m / \operatorname{in}\left(g_{i}\right), f^{\prime \prime}=f^{\prime}-m_{p+1} g_{i}$, and continue inductively, relabelling $f^{\prime \prime}$ as f^{\prime}. The process ends after finitely many steps, either with $f^{\prime}=0$ or with no monomial term of f^{\prime} divisible by $\operatorname{in}\left(g_{i}\right)$ for any i; we call f^{\prime} the remainder of f (with respect to the g_{i}) and the expression $f=\sum m_{i} g_{i}+f^{\prime}$ standard (note however that it is not uniquely determined by f and the g_{i}, though we can modify the algorithm to make it unique). Given a free module F with basis and $g_{1}, \ldots, g_{t} \in F$, let g_{i}^{\prime} be the initial term of g_{i}. For each pair of indices i, j for which $g_{i}^{\prime}, g_{j}^{\prime}$ involve the same basis element e_{k}, there are monomials $m_{i j}, m_{j i} \in S$ such that $g_{i j}=m_{j i} g_{i}-m_{i j} g_{j}$ has a lower initial term than either $m_{j i} g_{i}$ or $m_{i j} g_{j}$; let $h_{i j}$ be the remainder of $g_{i j}$ with respect to the g_{i}, setting $h_{i j}=0$ if g_{i}, g_{j} do not involve the same basis element. Then Buchberger's Criterion asserts that g_{1}, \ldots, g_{t} form a Gröbner basis for the submodule they generate if and only if $h_{i j}=0$ for all i and j. As an example, take $g_{1}=x^{2}, g_{2}=x y+y^{2}$ in $k[x, y]$, and order the monomials lexicographically, taking $x>y$. The initial terms are $x^{2}, x y$, whose gcd is x. Applying the division algorithm to g_{1}, g_{2}, we get $y g_{1}-x g_{2}=-x y^{2}$, whose remainder with respect to g_{1}, g_{2} is y^{3}, which is not divisible by either of the initial terms we have, so we add y^{3} to the basis. Then $g_{1}=x^{2}, g_{2}=x y+y^{2}, g_{3}=y^{3}$ is a Gröbner basis. As a bonus, we obtain all syzygies (relations) among the elements of this basis (Theorem 15.10 in Eisenbud): these relations are generated by the single one $x^{2} g_{2}-\left(x y+y^{2}\right) g_{1}$, together with the formula $g_{3}=y g_{1}+(y-x) g_{2}$ that arose from the construction of g_{3}. In fact, every finitely generated S-module has a resolution by free modules of length at most n (Hilbert's chain-of-syzygies theorem).

