VIRTUAL LECTURE 5-29

Given any ring homomorphism $f: A \rightarrow B$ there is an induced map f^{*} taking $\operatorname{Spec}(B)$ to $\operatorname{Spec}(A)$, which is continuous in the Zariski topologies on these spectra; this map can be used in conjunction with localization and passage to the quotient to relate the spectrum of a difficult ring to that of an easier one. As an example, we will simultaneously work out the spectra of $\mathbb{Z}[x]$ and $k[x, y], k$ a field; these two very different rings exhibit many parallel features. Letting B be one of these rings and $A=\mathbb{Z}$ in the first case, $A=k[x]$ in the second, we begin by observing that any prime ideal of B contracts to a prime ideal in A; if this is nonzero, then by passage to the quotient we are reduced to studying prime ideals of $\mathbb{Z} /(p)[x]$ in the first case (for p a prime integer) and prime ideals of $k^{\prime}[x]$ in the second (where k^{\prime} is a simple finite extension of k, obtained as the quotient of $k[x] /(q), q$ an irreducible monic polynomial over k. In both cases the ring obtained is a PID, so we deduce immediately that prime ideals of $\mathbb{Z}[x]$ meeting \mathbb{Z} nontrivially take the form (p, f), where p is a prime integer and $f \in \mathbb{Z}[x]$ is a monic polynomial whose reduction $\bar{f} \bmod p$ is irreducible in $\mathbb{Z} /(p)[x]$. Similarly, prime ideals in $k[x, y]$ meeting $k[x]$ nontrivially take the form $\left(q, q^{\prime}\right)$, where q is monic irreducible in $k[x]$ and q^{\prime} is monic in y, its reduction \bar{q}^{\prime} $\bmod x$ being monic irreducible in $k[y]$. It remains to treat prime ideals of $Z[x]$ contracting to 0 in \mathbb{Z}, and similarly prime ideals of $k[x, y]$ contracting to 0 in $k[x]$; here localization comes to the fore, telling us that such ideals are in bijection to prime ideals of $\mathbb{Q}[x], k(x)[y]$, respectively. As both of these rings are again PIDs, we deduce that the remaining nonzero prime ideals in $\mathbb{Z}[x]$ take the form (f) for $f \in \mathbb{Z}[x]$ irreducible (equivalently, $f \in \mathbb{Z}[x], f$ irreducible as a polynomial in $\mathbb{Q}[x]$, and f primitive). Once again a parallel result holds for $k[x, y]$.

More generally, homomorphisms $A \rightarrow B$ behave especially nicely on the level of prime spectra if B is flat as an A-module. Recall from the fall quarter that this means (by definition) that tensoring with B is an exact functor from A-modules to A-modules, and that B is automatically flat over A whenever B is projective (in particular free) as an A-module. Things are even nicer if B is faithfully flat; here (by one of several equivalent characterizations) the induced map from $\operatorname{Spec}(B)$ to $\operatorname{Spec}(A)$ is surjective, (equivalently, the extension of any maximal ideal of A is proper in B). There is however no requirement that the map from $\operatorname{Spec}(B)$ to $\operatorname{Spec}(A)$ be injective, and indeed B can have a much larger spectrum than A in this situation.

Apart from flat extensions, the other kinds of especially nice ring extensions from this point of view are localizations. The localization $B=A_{S}$ of a ring A by a multiplicatively closed subset S is such that every ideal of B is the extension of an ideal of A. Though in general different ideals of A can have the same extension in B, this cannot happen for prime ideals: there is a one-to-one inclusion-preserving correspondence between prime ideals of B and prime ideals of A not meeting S, given by extension from A to B and contraction from B to A. (The same holds for primary ideals and was used to derive the uniqueness results in class for primary decompositions.) This phenomenon helps explain the term "localization"; in the special case where S is the complement of a fixed prime
ideal P, localization cuts out all prime ideals except those "Zariski-close" to P in the sense that they are contained in it. (In a similar but more elementary manner, moding out by P cuts out all primes except those containing P.) If S is the complement of P, then in particular A_{S} is a local ring, whose unique maximal ideal is generated by P.

Recall also from last quarter that integral extensions of a ring also behave nicely in this respect. We saw then (in our current language) that given an integral extension $A \subset B$, every prime ideal of A is the contraction of some prime ideal of B; although there can be two primes in B with the same contraction in A, there cannot be any inclusion relations between two such ideals. In particular, the (Krull) dimensions of A and B always coincide.

