Sample Final Problems–Math 506

1. State the version of the Nullstellensatz that holds for arbitrary basefields.

2. Let $f : A \to B$ be a homomorphism of rings. Show that the induced map $f^* :$ Spec $(B) \to$ Spec(A) is continuous with respect to the Zariski topology on both spectra.

3. State the theorem on existence of primary decompositions of ideals in a Noetherian ring, indicating also the two features of this decomposition that are uniquely determined by the ideal.

4. Give an example of a Noetherian domain of dimension one that is not a PID.

5. Give a sufficient condition for a polynomial $q \in \mathbb{Z}[x]$ to have a solution in \mathbb{Z}_p , the ring of *p*-adic integers, for some prime *p*.

6. Show that $\mathbb{Z}[i]$, the ring of Gaussian integers, is a faithfully flat extension of \mathbb{Z} , first by showing that it is flat, and then verifying its faithfulness by showing that the induced map on prime spectra is surjective.

7. Give a necessary and sufficient condition in terms of ideal factorization for one nonzero ideal I in a Dedekind domain A to divide another.

8. Show that there is no surjective morphism from K^m to K^n for any algebraically closed field K if m < n.