LECTURE 6-2

We conclude with a brief review of completions of rings. Given a ring R and ideal I, its I-adic completion \hat{R} is defined to consist of all sequences r_{1}, r_{2}, \ldots with $r_{i} \in R / I^{i}, r_{i} \equiv r_{j}$ $\bmod I^{i}$ for $i<j$; it is easy to see that the congruence condition makes sense for any $i<j$. Addition, subtraction, and multiplication are all defined componentwise and are easily seen to be compatible with the congruence condition. Roughly speaking, \hat{R} is the smallest ring containing R (each $r \in R$ being identified with the constant sequence r, r, \ldots) for which any series $\sum r_{j}$ with $r_{j} \in I^{j}$ converges. In particular, $1+i$ is unit in \hat{R} for any $i \in I$; its inverse is $1-i+i^{2}-\ldots$. If $I=P$ is maximal, then \hat{R} is local with maximal ideal generated by P. Similarly one completes any R-module M with respect to I by letting \hat{M} consist of all sequences $m_{1}, m_{2} \ldots$ with $m_{i} \in M / I^{i} M$ and $m_{i} \equiv m_{j} \bmod I^{i} M$ for $i<j$; then \hat{M} is a \hat{R}-module in a natural way and the functor sending to M to \hat{M} is exact on finitely generated R-modules if R is Noetherian. The main motivation for completion is that it enables us to solve many equations unsolvable without it; for example, if M is an ideal, R is M-adically complete, and $f(x) \in R[x]$ is a polynomial having $a \in R$ as an approximate root in the sense that $f(a) \equiv 0 \bmod \left(f^{\prime}(a)^{2} M\right)$, then there is a genuine root b of $f(x)$ near a in the sense that $f(b)=0, b \equiv a \bmod \left(f^{\prime}(a) M\right)$; if $f^{\prime}(a)$ is a non-zero-divisor in R, then b is uniquely determined by these properties. In particular, taking $R=\mathbb{Z}, M=(p)$ for p prime, so that $\hat{R}=\mathbb{Z}_{p}$, the previously described ring of p-adic integers, then any polynomial $f(x 0 \in \mathbb{Z}[x]$ having a simple root in the integers $\mathbb{Z} /(p) \bmod p$ has an honest root in the p-adic integers \mathbb{Z}_{p}; you saw already the necessity for assuming that the root in $\mathbb{Z} /(p)$ is simple in a homework problem last quarter. On the other hand, \hat{R} is not too much bigger than R, being Noetherian whenever R is, having the same dimension as R, and having the associated graded ring $G_{\hat{M}}(\hat{R})$ of \hat{R} with respect to the ideal \hat{M} naturally isomorphic to the corresponding associated graded ring $G_{M}(R)$ of R with respect to M.

