LECTURE 6-2

We conclude with a brief review of completions of rings. Given a ring R and ideal I, its I-adic completion R is defined to consist of all sequences r_1, r_2, \ldots with $r_i \in R/I^i, r_i \equiv r_j$ mod I^i for i < j; it is easy to see that the congruence condition makes sense for any i < j. Addition, subtraction, and multiplication are all defined componentwise and are easily seen to be compatible with the congruence condition. Roughly speaking, \hat{R} is the smallest ring containing R (each $r \in R$ being identified with the constant sequence r, r, \ldots) for which any series $\sum r_j$ with $r_j \in I^j$ converges. In particular, 1 + i is unit in \hat{R} for any $i \in I$; its inverse is $1-i+i^2-\ldots$ If I=P is maximal, then \hat{R} is local with maximal ideal generated by P. Similarly one completes any R-module M with respect to I by letting M consist of all sequences $m_1, m_2 \dots$ with $m_i \in M/I^i M$ and $m_i \equiv m_j \mod I^i M$ for i < j; then M is a \hat{R} -module in a natural way and the functor sending to M to \hat{M} is exact on finitely generated R-modules if R is Noetherian. The main motivation for completion is that it enables us to solve many equations unsolvable without it; for example, if M is an ideal, Ris M-adically complete, and $f(x) \in R[x]$ is a polynomial having $a \in R$ as an approximate root in the sense that $f(a) \equiv 0 \mod (f'(a)^2 M)$, then there is a genuine root b of f(x)near a in the sense that $f(b) = 0, b \equiv a \mod (f'(a)M)$; if f'(a) is a non-zero-divisor in R, then b is uniquely determined by these properties. In particular, taking $R = \mathbb{Z}, M = (p)$ for p prime, so that $R = \mathbb{Z}_p$, the previously described ring of p-adic integers, then any polynomial $f(x0 \in \mathbb{Z}[x])$ having a simple root in the integers $\mathbb{Z}/(p) \mod p$ has an honest root in the p-adic integers \mathbb{Z}_p ; you saw already the necessity for assuming that the root in $\mathbb{Z}/(p)$ is simple in a homework problem last quarter. On the other hand, \hat{R} is not too much bigger than R, being Noetherian whenever R is, having the same dimension as R, and having the associated graded ring $G_{\hat{M}}(\hat{R})$ of \hat{R} with respect to the ideal \hat{M} naturally isomorphic to the corresponding associated graded ring $G_M(R)$ of R with respect to M.

NOW LET'S PARTY!!!