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Introduction

In this paper we produce recipes for the group SO∗(2n) analogous to those of
[10] for Sp(p, q), attaching a pair (T1,T2) to a signed involution corresponding to
a simple Harish-Chandra module for SO∗(2n) of trivial infinitesimal character,
where T1 is a domino tableau and T2 an equivalence class of signed tableaux of
the same shape. As before the domino tableau will parametrize the annihilator
of the corresponding Harish-Chandra module while the class of signed tableaux
parametrizes its associated variety. Our construction generalizes to signed in-
volutions outside the parametrizing set for simple Harish-Chandra modules for
SO∗(2n); we will also give a representation-theoretic interpretation of it in this
larger context.

Section 1 Cartan subgroups and Weyl groups

Let G = SO∗(2n), the group of matrices in SO(2n,C) leaving a suitable skew-
Hermitian form invariant (see [7, Ch. X]) and let g0 be its Lie algebra, g the
complexification of g0. Let θ be the usual Cartan involution of G or of g and let
k+p be the corresponding Cartan decomposition of g. The normalizer K of k in G
is then a maximal compact subgroup. As a choice of simple roots in g relative to
a Cartan subalgebra we take e2 + e1, e2 − e1, . . . , en − en−1, following [2, 9].

There are [n/2]+1 conjugacy classes of Cartan subgroups in G. If we take
H0 to be a compact Cartan subgroup of G and define Hi inductively for i > 0 as
the Cayley transform of Hi−1 through en−2i+1 − en−2i+2 for 1≤ i ≤ [n/2], then the
Hi furnish a complete set of representatives for the conjugacy classes of Cartan
subgroups of G. The Weyl group W(Hi) is isomorphic to Wi nS i

2 ×Sn−2i, where
Wi denotes the Weyl group of type Bi, embedded into the Weyl group W ′

n of type
Dn as for Sp(p, q) [10], and Sr denotes the symmetric group on r letters [8]. The
subgroups Hi are all connected unless i = n/2 and n is even. For most of this pa-
per we consider only simple Harish-Chandra modules with trivial infinitesimal
character in the principal block B of G (corresponding to the trivial representa-
tion of the component group of each Hi); we will deal with modules in the other
block B′ later.

Section 2 The D set and Cartan involutions

Using Vogan’s classification of simple Harish-Chandra modules with trivial in-
finitesimal character by Z/2Z-data [14] we parametrize the simple modules in B
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combinatorially, as follows. Any involution ι in Wn is encoded by its clan σ, con-
sisting by definition of a set of ordered pairs (ai,εi)(ai,bi)+, and (ai,bi)−, where
every εi is a sign + or −, every ai,bi lies in {1, . . . ,n}), and every number from 1
to n appears exactly once among the ai and bi; given σ, the corresponding invo-
lution ι sends ai to εiai if (ai,εi) lies in σ, flips ai and bi if (ai,bi)+ lies in σ, and
flips ai and −bi if (ai,bi)− lies in σ. By convention we order the pairs in a clan
by increasing order of their largest (or only) numerical coordinate and whenever
a pair (ai,bi)+ or (ai,bi)− occurs in σ we assume that ai < bi. Denote by Sn
the set of all clans. We call a clan even if the number of pairs (ai,bi)+ appear-
ing in it has the same parity as the number of pairs (ci,−) and odd otherwise;
denote by S ′

n the set of even clans and by I ′n the corresponding set of involu-
tions in In. We take S ′

n as a parametrizing set for the modules in B. We will
give a representation-theoretic interpretation of odd clans later, together with a
parametrization of modules in the non-principal block B′ for G.

The Cartan involution θ corresponding to θ ∈ Sn is constructed in the same
way as for Sp(p, q) [10]: it fixes the unit coordinate vector e i whenever (i,εi) ∈ σ
with εi a sign; it interchanges e i and e j whenever (i, j)+ ∈σ; and it interchanges
e i and −e j whenever (i, j)− ∈ σ unless j − i = ±1, in which case it sends both
e i and e j to their negatives. The root e i+1 − e i is compact imaginary whenever
either (i,εi), (i + 1,εi+1) ∈ σ with εi = εi+1 or (i, i + 1)− ∈ σ. The root e2 + e1 is
compact imaginary whenever either (1,ε1), (2,ε2) ∈σ with ε1 =−ε2 or (1,2)+ ∈σ.

Section 3 The cross action and the Cayley transform

For an element σ of Sn and a pair i, j of indices between 1 and n we define
In(i, j,σ) as in [6, Definition 1.9.1], interchanging the unique occurrences of i
and j in σ and leaving all others (and all signs) unchanged, provided that at
least one of the indices i, j is paired with an index k 6= i, j in σ; otherwise, we set
In(i, j,σ)=σ.

3.1. PROPOSITION. Let αi be the simple root e i − e i−1,σ ∈ Sn. Then si ×σ,
the cross action of the simple reflection si corresponding to αi on σ, is given by
In(i−1, i,σ). If α1 = e2 − e1, then the cross action of s1 on σ is given by changing
the signs attached to (the singletons or pairs including) 1 and 2 in In(1,2,σ).
The Cayley transform of σ through αi is obtained from σ by replacing the pairs
(i−1,ε)(i,−ε) in it by (i, i+1)+ (if αi is noncompact imaginary for σ or by replacing
(i, i+1)+ by either (i−1,+)(i,−) or (i−1,−)(i,+), thereby obtaining two clans, if αi
is real. The Cayley transform of σ through α1 similarly either replaces (1,ε)(2,ε)
in σ by (1,2)− or (1,2)− by either (1,+)(2,+) or (1,−)(2,−).

Proof. This follows from a direct computation, along the lines of [6, §§1.8,9,12].
Note that both the Cayley transform and the cross action preserve evenness (or
oddness) of a clan.
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Section 4 τ-invariants and wall-crossing operators in rank 2

The definition of the τ-invariant for Sp(p, q) carries over to G, except that 2e1
is no longer a simple root while e1 + e2 is a new simple root. As noted in [9],
the criterion for e1 + e2 to lie in the τ-invariant of a domino tableau is that the
2-domino is vertical and lies either in the leftmost column of the tableau or the
column to its right. We extend these definitions to SM ,S ′

M as in [6]. The root
e1 + e2 lies in the τ-invariant of an involution σ if and only if either it is sent
to a negative root by θ or the indices 1,2 are paired with opposite signs ε1,ε2 in
σ. Given a pair {α,β} of distinct nonorthogonal simple roots, we define the wall-
crossing operator Tαβ on the level of clans (or simple Harish-Chandra modules)
as in [6] and [13]. It is single-valued, implemented either by the cross action by
the simple reflection corresponding to α or β or the Cayley transform through α or
β itself„ whichever of these operations has the required effect on the τ-invariant
of σ. We will define these operators on domino tableaux below and show that
their actions on clans and domino tableaux are compatible. There is no uniform
recipe for their action on signed tableaux (unlike the situation for Sp(p, q)), but
their action on associated varieties of simple Harish-Chandra modules is always
trivial.

Section 5 Wall-crossing operators in rank 4

We also have wall-crossing operators TDβ and TβD attached to the unique set
{e2 − e1, e2 + e1, e3 − e2, e4 − e3} of simple roots spanning a root system R of type
D4, if the rank of G is at least 4 [4, 9]. These operators can be either single- or
double-valued. More precisely, the operator TDβ takes clans of type Aβ in the
sense of [9, 4.4] to clans of type D; the operator TβD does the reverse. If the
indices 1,2,3,4 are all paired with each other or with signs in σ and if σ is of type
Aβ, then σ′ = TDβσ is obtained from σ by replacing (1,ε)(3,ε′) in σ by the single
pair (1,3)εε

′
, where we multiply the signs ε,ε′ in the obvious way. The operator

TβD reverses this action, replacing (1,3)ε in σ by (1,ε1)(3,ε2), with the εi chosen
in the two possible ways to make their product equal to ε. In general, the action
of TDβ or TβD on a clan σ in its domain is more complicated to write down, but it
is always implemented by a composition of cross actions and Cayley transforms
corresponding to simple roots in R. We will use this fact to show that the actions
of these operators on clans and domino tableaux are compatible in §9. These
operators act trivially on associated varieties.

Section 6 The algorithm

As for Sp(p, q) in [10] we now attach a pair H(σ) = (T1,T2) to a parameter σ,
where T1 is a domino tableau and T2 is an equivalence class of signed tableaux
of the same shape as T1, this shape being a doubled partition of 2n, that is, one
whose parts occur in equal pairs. Any representative T2 of T2 will thus also
have rows occurring in pairs of equal length; each row in a pair (called a double
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row) will begin with the same sign. We define the equivalence relation on signed
tableaux as in [10], replacing even double rows by odd ones, so that any signed
tableau is equivalent to any other obtained from it by changing all signs in any
pair D1,D2 of double rows of the same odd length, of or different odd lengths
whenever there is an open cycle with its hole in one of D1,D2 and its corner in
the other. The algorithm for computing H(σ) is quite similar to its counterpart
for Sp(p, q) in [10], but different enough that we give it in detail.

6.1. DEFINITION. Let σ ∈Sn. Order the pairs in σ as above, by increasing size
of their largest or only numerical coordinates. Construct the pair H(σ)= (T1,T2)
inductively, starting from a pair of empty tableaux. At each step we insert the
next element (i,ε) or (i, j)ε into the current pair of tableaux. Assume first that
the next element of σ is (i,ε) and choose any representative T2 of T2.
(1) If the first double row of T2 ends in −ε, then add ε to the ends of both of its

rows and add a vertical domino labelled i to the end of the first double row
of T1.

(2) If not and if the first double row of T2 is even, then we look first for a lower
double row of T2 with the same length ending in −ε; if these is such a double
row, interchange it with the first double row of T2 and proceed as above.
Otherwise we start over, trying to insert (i,ε) into the highest double row
of T2 strictly shorter than its first double row. (In the end we may have to
insert a domino labelled i into a new double row of T1, using ε for both of
the signs in the new double row of T2.)

(3) If not and the first (or first available) double row of T2 has even length but
there is more than one double row of this length, but none ending in −ε,
then we change all signs in the first two double rows of T2 of this length and
then proceed as in the previous case.

(4) Otherwise the highest available double row R in T2 has odd length, ends
in ε, and is the only double row of this length. In this case we look at the
domino in T1 occupying the last square in the lower row of R. If we move
T1 through the open cycle of this domino, we find that its shape changes by
removing this square and adding a square either at the end of the higher
row of some double row R′ of T1 or else in a new row, not in T1. It if lies
in a new row, then change all signs in R and proceed as above. If it does
not lie in a new row and R′ 6= R, then change the signs of T2 in both R and
R′ and proceed as above (again not actually moving T1 through this open
cycle). Finally, if R = R′, then move T1 through the open cycle, place a new
horizontal domino labelled i at the end of the lower row of R in T1 and
choose the signs in T2 so that both rows of R now end in ε while all other
signs in T2 remain the same as before.

6.2. DEFINITION. Retain the notation of the previous definition but assume
now that the next element of σ is (i, j)ε. We begin by inserting a horizontal
domino labelled i at the end of the first row of T1 if ε = +, or a vertical domino
labelled i at the end of the first column of T1 if ε=−, following the procedure of
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[2] (and thus bumping dominos with higher labels as needed). We obtain a new
tableau T′ whose shape is obtained from that of T1 by adding a single domino D,
lying either in some double row R of T1 or else in a new row (in which case D
must be horizontal). Let ` be the length of R (before D was added).
(1) If D is horizontal and ` is odd, then add a domino labelled j to T′ immedi-

ately below the position of D, in the lower row of R. Choose signs in T2 so
that both rows of R end in the same sign as before, leaving all other signs
the same.

(2) If D is horizontal and ` is even, then T′ does not have special shape but
its shape becomes special if one moves through just one open cycle. Move
through this cycle, so that R is now a genuine double row, and choose the
signs in T2 so that both rows of R end in different signs than they did before,
leaving all other signs the same. If a new double row has been created, put
+ signs in both squares of T2. Now T2 has either two more + signs than
before or else two more − signs. Insert a vertical domino labelled j to the
first available double row in T1 strictly below R, using the procedure of the
previous definition. The sign attached to j is − if T2 gained two + signs and
is + otherwise.

(3) If D is vertical and ` is odd, then R is still a double row; choose signs so
that its rows now end in the same sign as they did before, leaving all other
signs unchanged. If a new double row was created, then put two + signs (for
definiteness) into the corresponding squares in T2. Add a vertical domino
labelled j to the first available double row strictly below R in T′, as in the
previous case, attaching to it this time the opposite sign used in that case
(so that if T2 gained two + signs at the first step, then the sign attached to
j is again +, and similarly for −).

(4) If D is vertical and ` is even, then proceed as in the previous case.

As for Sp(p, q) one can check that the equivalence class T2 does not change if
T2 is replaced at any stage with another representative of its equivalence class.
To compute the associated variety of the Harish-Chandra module corresponding
to σ we choose any representative of T2 and normalize it so that all odd double
rows begin with +; as for Sp(p, q), this variety is the closure of one nilpotent orbit
[12, 5.2] and such orbits (via the Kostant-Sekiguchi bijection) are parametrized
by signed tableaux with shape a doubled partition of 2n in which odd rows begin
with +, except that such tableaux with only even rows correspond to two orbits
[1, 9.3.4].

Section 7 Wall-crossing operators and domino tableaux

We define the τ-invariant of a pair (T1,T2) to be that of T1, as in [10]. The opera-
tor Tαβ is defined on T1 as in [10] if α,β are adjacent simple roots e i−e i−1, e i+1−e i
or e i+1 − e i, e i − e i−1 with i ≥ 2. Thus in particular these operators Tαβ always
preserve tableau shape. If (α,β) is (e3 − e2, e2 + e1) or (e2 + e1, e3 − e2) then Tαβ
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is defined on a domino tableau as in [9, 4.3.5] replacing the extended open cycle
of the 3-domino in the first tableau relative to the second by the cycle including
the 3-domino. This cycle is always closed, since the shape of the domino tableaux
is a doubled partition; if the cycle including the 3-domino were open, it would
have to be simultaneously up and down in the sense of [5, §3], a contradiction.
We define the operators TDβ and TβD on domino tableaux T1 as follows. Assume
first that the first four dominos of T1 from a subtableau S of special shape. If the
cycle of the 4-domino includes the 3-domino, then both operators send T1 to two
tableaux, one obtained from T1 by interchanging the 3- and 4-dominos, the other
obtained from this one by moving through either or both of the cycles through the
3- and 4-dominos, whichever of these is closed. If the cycle of the 4-domino does
not include the 3-domino, then the unique image of T1 is the tableau obtained
from it by interchanging the 3- and 4-dominos. If S does not have special shape,
then move through the appropriate cycles of T1 to make S have special shape, as
in [9, §4]; these cycles are necessarily closed since if they were open they would
necessarily be both up and down in the sense of [5, §3], a contradiction. Then
proceed as in the case where S is special; there is just one tableau in the image
in this case. It can happen that the image of a clan σ under one of these operators
consists of two clans σ1,σ2 while the image of the domino tableau T1 attached to
σ by H is single-valued; if so then H always attaches the same domino tableau
to both σi. As mentioned above, there is no uniform formula for the action of
wall-crossing operators on signed tableaux, but the induced action on associated
varieties is trivial.

Section 8 H commutes with τ-invariants

As in [6] and [10], we prove that our algorithm H computes annihilators of simple
Harish-Chandra modules by showing that it commutes with taking τ-invariants
and applying wall-crossing operators. In this section we deal with τ-invariants.

8.1. PROPOSITION. Let σ ∈ Sn and let α be a simple root for G. Then α ∈ τ(σ)
if and only if α ∈ τ(H(σ).

Proof. This is proved in essentially the same way as [10, Proposition 7.1], omit-
ting the case α = 2e1, which does not arise in type D. It is replaced by the case
α= e2 + e1, which is again easily handled directly.

Section 9 H commutes with wall-crossing operators

We complete our program of showing that the map H computes annihilators by
showing that it commutes with wall-crossing operators.

9.1. PROPOSITION. Let T be a wall-crossing operator Tαβ,TDβ, or TβD . Let σ
be a clan in the domain of T. Then the clan or clans in Tσ have domino tableaux
obtained by applying T to the domino tableau T1 in H(σ).

Proof. If T = Tαβ where α,β are adjacent simple roots with neither of these being
e2 + e1, then this follows as in the proof of [10, Proposition 8.1]. If one of these
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roots is e2 + e1, then this follows by a direct calculation in rank 3 together with
[3, 2.2.9]. If T = TDβ or TβD then it follows in all cases from the bijectivity of
H (proved below) that the clan or clans corresponding to the tableaux in TT1
are obtained from σ by a composition of cross actions and Cayley transforms, so
arise from σ by the action of the Weyl group W ′ of type D4 corresponding to the
root system R used to define T and lying in the Weyl group Wn of G. Since H
is already known to commute with wall-crossing operators of rank 2, the clan
or clans satisfy the conditions to be of type D or Aβ (according as T = TDβ or
T = TβD). But the only clan or clans satisfying these conditions and arising from
σ via the action of W ′ are the value or values of Tσ, whence the result follows.
(As mentioned above, it is possible for TT1 to have just one value while Tσ has
two, but in that case the domino tableaux attached to the clans in Tσ are always
the same.)

9.2. THEOREM. Let σ ∈ Sn. Then the first coordinate T1 of H(σ) parametrizes
the annihilator of the simple Harish-Chandra module corresponding to σ via the
classification of [9, Theorem 4.8.3]. The modules corresponding to σ,σ′ lie in
the same cell whenever the second coordinates T2,T

′
2 of H(σ),H(σ′) agree up to

changing the signs in rows of odd length.

Since the operators Tαβ,TDβ,TβD generate the cells of Harish-Chandra mod-
ules of trivial infinitesimal character for G0, by [8, Theorem 7] and [9, Theorem
4.6.2], the clans σ,σ′ corresponding to two such modules in the same cell are such
that any representatives T2,T′

2 of the equivalence classes T2,T
′
2 attached to σ,σ′

by H agree up to changing the signs in double rows of odd length.

Section 10 H is a bijection

10.1. THEOREM. The map H defines a bijection between Sn and ordered pairs
(T1,T2), where T1 is a domino tableau with shape a doubled parition of 2n and
T2 is an equivalence class of signed tableaux of the same shape as T1 such that
the two rows in every double row begin with the same sign.

Proof. We use the group G′ =O∗(2n) of matrices in O(2n,C) preserving the skew-
Hermitian form used to define G. This group has two components, with G as
its identity component. Every simple Harish-Chandra module Z for G either
already has the structure of a Harish-Chandra module for G′, in which case there
is exactly one other simple Harish-Chandra module Z′ for G′ isomorphic to Z as
a module for G, or else there is a unique simple Harish-Chandra module Z′ for
G not isomorphic to Z such that the direct sum of Z and Z′ is a simple module
for G′. Now the surjectivity is proved in the same way as for [9, Theorem 9.1],
interchanging the roles of double rows of even and odd length, and bearing in
mind that two + signs and two − signs are added to the signed tableau in cases
(1) and (2) of Definition 6.2, while four equal signs are added to this tableau in
cases (3) and (4) of that definition. Then injectivity follows since by [8] there are
exactly two cells of simple Harish-Chandra modules for G′ of trivial infinitesimal
character for every nilpotent orbit in g0 corresponding to a doubled partition with
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at least one odd part and one such cell corresponding to each of the two orbits
with partition p for every doubled partition p of 2n with no odd parts.

10.2. COROLLARY. Given an ordered pair (T1,T2) in the range of H and a rep-
resentative T2 of T2, exactly one of (T1,T2) and (T1,T

′
2) lies in the range of H

when restricted to S ′
n, where T′

2 is obtained from T2 by changing the signs in
just one odd double row, provided that T2 has at least one double row. If all dou-
ble rows of T2 are even, so that T2 consists of T2 alone, then (T1,T2) lies in the
range of H restricted to Sn if and only if the number nv of vertical dominos in T1
is congruent to 0 mod 4.

Proof. This follows from the module structure of the cells in G described in [8,
Theorem 10], together with the criterion in [9, Corollary 4.1.4] for an ordered
pair (T1,T2) of domino tableaux of the same doubled partition shape with only
even rows to correspond to an element of the Weyl group W of type Dn in the
bijection of [2].

Given now an ordered pair (T1,T2) in the range of H with T1 having at least
odd double row and tableaux T2,T′

2 as in the statement of the corollary, exactly
one of the clans σ,σ′ corresponding to the ordered pairs (T1,T2), (T1,T

′
2) is even

and so corresponds to a simple Harish-Chandra module Z for G. We regard the
other clan as parametrizing the other simple Harish-Chandra module for G′ with
the same restriction to G as Z. If on the other hand T1 has only even rows and
nv is a multiple of 4, then the clan σ corresponding to (T1,T2) corresponds to a
module Z in the principal block B for G. If nv is not a multiple of 4, then Z lies
in the nonprincipal block B′ of G. Such modules Z pair up with unique ones Z′
in the principal block in such a way that the direct sum of Z and Z′ is a simple
Harish-Chandra module for G′.

It remains to show that if σ ∈Sn,H(σ)= (T1,T2), and if T2 is a representative
of T2, then the module Z corresponding to σ has associated variety the closure of
the K-orbit in p corresponding to a (suitable normalization of) T2 via the Kostant-
Sekiguchi correspondence. This we do in the next and final section.

Section 11 Associated varieties

We recall that nilpotent G′-orbits in g0 are parametrized by signed tableaux with
shape a doubled partition of 2n such that odd rows begin with +. Nilpotent G-
orbits in g0 are parametrized in the same way, except that the single G′-orbit
corresponding to a signed tableau with only even rows splits into two G-orbits.
Given a clan σ ∈ Sn with H(σ) = (T1,T2) and a representative T2 of T2, let T be
obtained from T2 by changing signs as necessary to make its odd rows begin with
+.

11.1. THEOREM. Let σ ∈ S ′
n,H(σ) = (T1,T2), and define T from T2 as above.

The module Z for G corresponding to σ has associated variety the unique one
parametrized by T if T has at least one odd row, or one of the two parametrized
by T if T has only even rows (the same orbit for all clans σ with the same T).
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Proof. The proof is similar to that of [10, Theorem 10.1]. Let q be a θ-stable
parabolic subalgebra of g0 whose corresponding Levi subgroup L of G′ is O∗(2m)×
U(p1, q1)×·· ·×U(pr, qr), where 2m+ p1+ q1+ . . .+ pr + qr = 2n. There is an irre-
ducible derived functor module Aq of trivial infinitesimal character whose asso-
ciated variety corresponds to the Richardson orbit O attached to q in the sense of
[11]. Its clan σ′ has one block of terms for every simple factor in L. If m ≥ 1, the
first block of terms can be either (1,2)− · · · (m−1,m)− or (1,2)+(3,4)− · · · (m−1,m)−,
if m is even, or 1+(2,3)− · · · (m−1,m)− or 1−(2,3)− · · · (m−1,m)−, if m is odd. The
blocks of terms corresponding to the U(pi, qi) factors are defined as in the proof of
[10, Theorem 10.1], with the roles of initial + and − signs reversed, so that factor
U(p, q) with p > q corresponds to a block of terms beginning with p− q singleton
indices with − signs attached rather than + ones. Letting H(σ′) = (T1,T2) and
defining T as above from T2, one checks immediately that the orbit corresponding
to T is indeed O . Since both T and associated varieties are constant across cells
of Harish-Chandra modules, the desired result holds whenever T corresponds to
a Richardson orbit.

Given Z as in the theorem, let Ō be its associated variety, transferred via
Kostant-Sekiguchi to a real nilpotent orbit. Using induction by stages, we can
induce O to an orbit O ′ for a higher rank group G′ such that all odd parts in the
partition of O ′ have multiplicity at most 4, whence O ′ is Richardson by [11, Corol-
lary 6.2]. The theorem then holds for the module Z′ correspondingly induced from
Z. But now O is the only orbit of G inducing to O ′ relative to a suitable parabolic
subalgebra q of Lie G′ having G has the only simple factor of type D in its Levi
subgroup. The theorem follows.

For G′ the result is the same, except that the associated variety of a simple
module Z which is reducible over G is the closure of the single G′-orbit (or the
union of the closures of the two G-orbits) corresponding to T; note that T has only
even rows in this case.
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