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Introduction

This paper is the fourth and last in the series “On the classification of primitive
ideals for complex classical Lie algebras", extending the main results of [6] to
type D. Here the generalized τ-invariant defined in [6] must be defined in a
different way, as there is no pair of adjacent simple roots in type D with different
lengths. Instead we attach a family of operators to a quadruple of simple roots
spanning a subsystem of type D4, each of them taking either one or two values,
like the corresponding operators in types B and C, and use these to characterize
primitive ideals via their generalized τ-invariants.

Section 1

4.1.1. NOTATION. We will implicitly rely on the notation introduced in the first
three parts of this sequence of papers. It is summarized in an appendix of [6].
(1) For simple roots we take α′

1 = e2 + e1 and αm = em − em−1 for 2 ≤ m ≤ n.
This non-standard notation will facilitate the use of results from [6]. Set
Π′ = {α′

1,α2, . . . ,αn} and write s′1 for sα′
1
, the reflection in α′

1. We let W be the
Weyl group of type Cn and will write W ′ for the subgroup of W generated by
the reflections in the roots belonging to Π′. Further, let W ′′ =W \W ′.

(2) We define

S ′(M1, M2)= {γ ∈S (M1, M2) | |{(e, g,ϵ) ∈ γ |ϵ=−1}| ≡ 0 (mod 2)},

and set S ′′(M1, M2)=S (M1, M2)\S ′(M1, M2). Define S ′(n,n) and S ′′(n,n)
by imitating [4, 1.1.2].

(3) For (T1,T2) ∈ T (M1, M2) we write nh((T1,T2)) = nh(T1)+nh(T2), and simi-
larly define nv((T1,T2).

(4) We define

T ′(M1, M2)= {(T1,T2) ∈T (M1, M2) |nv((T1,T2))≡ 0 (mod 4)}

and

T ′′(M1, M2)= {(T1,T2) ∈T (M1, M2) |nv((T1,T2))≡ 2 (mod 4)}.
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The sets T ′(n,n) and T ′′(n,n) are defined by imitating [4, 1.1.9]. When
we wish to specify that the D grid is being used explicitly, we will write
T ′

D(M1, M2), T ′′
D (M1, M2), T ′

D(n,n), and T ′′
D (n,n). Write TD(n,n) for the

union of T ′
D(n,n) and T ′′

D (n,n).

4.1.2. REMARK. For w ∈W we have δ(s′1w) = SCR(1;SCR(2;InR(1,2;δ(w)))) and
δ(ws′1)=SCL(1;SCL(2;InL(1,2;δ(w)))). Consequently, we have

δ(W ′)=S ′(n,n) and δ(W ′′)=S ′′(n,n).

4.1.3. PROPOSITION. Let (T′,v,ϵ) ∈ M and let (T,P)=α((T′,v,ϵ)).
(1) If ϵ= 1, then either

(a) P is horizontal, nh(T)= nh(T′)+1, and nv(T)= nv(T′), or
(b) P is vertical, nh(T)= nh(T′)+2, and nv(T)= nv(T′)−1.

(2) If ϵ=−1, then either

(a) P is horizontal, nh(T)= nh(T′)−1, and nv(T)= nv(T′)+1, or
(b) P is vertical, nh(T)= nh(T′), and nv(T)= nv(T′)+2.

Proof. The proof is by induction on |M|; the case when |M| = 1 is obvious. Set
e = sup M and note that the proof of the proposition is clear when v = e, so assume
v ̸= e. Set T

′ = T′− e and (T,P) =α((T
′
,v,ϵ)). Then T = T− e. Set Pe = P(e,T) and

P ′
e = P(e,T′). We will prove statement (1) for nh, the others can be verified by a

similar case-by-case analysis. There are four cases.
Case A. Here P is horizontal and |P∩P ′

e| = 1. Then P ′
e and P are vertical and

Pe is horizontal. Thus nh(T)= nh(T)+1= nh(T
′
)+2= nh(T′)+2, as desired.

Case B. Here P is horizontal and P = P
′
e. Then P ′

e, P, and Pe are horizontal.
Thus nh(T)= nh(T)+1= nh(T

′
)+2= nh(T′)+2.

Case C. Here P is vertical and |P∩P ′
e| = 1. Then P ′

e and P are horizontal and
Pe is vertical. Thus nh(T)= nh(T)= nh(T

′
)+2= nh(T′)+1.

Case D. Here P is vertical and P = P
′
e. Then P ′

e, P, and Pe are vertical. Thus
nh(T)= nh(T)= nh(T

′
)+2= nh(T′)+2.

4.1.4. COROLLARY. Let γ ∈S (M1, M2). Then nh(A(γ))≡ 0 (mod 2) and nv(A(γ))≡
0 (mod 2). We have γ ∈ S ′(M1, M2) if and only if nv(A(γ)) ≡ 0 (mod 4) and γ ∈
S ′′(M1, M2) if and only if nv(A(γ))≡ 2 (mod 4).

Proof. The proof is by induction on |M1|, and is then obvious from the definitions
and Proposition 4.1.3.

4.1.5. COROLLARY. (1) We have T (M1, M2)=T ′(M1, M2)∪T ′′(M1, M2).

(2) The map A yields a bijection from S ′(M1, M2) to T ′(M1, M2) and from
S ′′(M1, M2) to T ′′(M1, M2).

4.1.6. COROLLARY. The map A ◦δ yields a bijection from W ′ to T ′(n,n) and
from W ′′ to T ′′(n,n).
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Section 2

4.2.1. NOTATION. Let (T1,T2) ∈ TK (M1, M2) for K = B, C, or D. Let c be an
extended cycle in T1 relative to T2 and suppose that c is a union of open cycles in
T1. We write

Cy(c)= {c′ | c′ ⊆ c and c′ ∈OC(T1)},

and

Sq(c)= {S | there is a c′ ∈ Cy(c) such that S = Sb(c′) or S = S f (c′)}.

We let nu(c) be the number of up cycles contained in c and nd(c) be the number
of down cycles contained in c.

4.2.2. PROPOSITION. Let (T1,T2) and c be as in 4.2.1 and suppose that Cy(c)⊆
OC∗(T1). Let c be the extended cycle in T2 relative to T1 corresponding to c.
Then either nu(c)+nu(c)= nd(c)+nd(c)+2 or nu(c)+nu(c)= nd(c)+nd(c)−2.

Proof. The proof is by induction on |M1|, the proposition being vacuously true
when |M1| = 0. Let e = sup M1. If e ∉ c then the proposition in true by induction
using Theorem 2.2.3 and Proposition 2.2.4, cf. Proposition 2.3.3(b)). So assume
e ∈ c. The proposition is clear if c = {e} so assume c ̸= {e}. Let (T′

1,T′
2)= (T1,T2)−L.

Then by Proposition 2.3.3(b), c \{e} is an extended cycle in T′
1 relative to T′

2. Set
c′ = c \ {e} and let c′ be the corresponding extended cycle in T′

2 relative to T′
1.

We will assume that P(e,T1) is horizontal; an analogous transposed argument
works when P(e,T1) is vertical. If P ′(e,T1) is also horizontal, that is, if for some
c̃ ∈ Cy(c), c̃ ̸= {e}, we have Sb(c̃) ∈ P(e,T1) or S f (c̃) ∈ P ′(e,T1), then the proposition
is clear using the c.s.p.b’s of Theorem 2.2.3 (1a) or (2a) and Proposition 2.2.4 part
(1a) or (2a). So assume P ′(e,T1) is vertical. Set P(e,T1) = {Si j,Si, j+1}. There are
two cases:

Case A. Here {e} ∈ Cy(c). Then P ′(e,T1) = {Si j,Si+1, j}. Thus {e} is a down
cycle, and so by using Proposition 2.2.4 (1b) we have nu(c) = nu(c′) and nd(c) =
nd(c′)+1. Now by Theorem 2.2.3 (1b) there are cycles c1 and c2 ∈OC∗(T2) and c̃′ ∈
OC∗(T′

2) such that Sb(c1) = Sb(c̃′), S f (c1) = Si+1, j, Sb(c2) = Si, j+1, and S f (c2) =
S f (c̃′). Note that the alternative suggested by Theorem 2.2.3 (1b) is the existence
of a cycle c̃ ∈ OC∗(T2) with Sb(c̃) = Si+1, j and S f (c̃) = Si, j+1, but then {e} is an
extended cycle in T1 relative to T2, contradicting the assumption that c ̸= {e}. Let
U = µ(Cy(c) \ {c1, c2}) where µ is the c.s.p.b. of Theorem 2.2.3 (1b). Then c′ =
(
⋃

c̃∈U c̃)∪ c̃′. There are three possibilities. Suppose first that c1 is a down cycle.
Then c2 is nested in c1 and thus we have ρ(Sb(c̃′)) = ρ(Sb(c1)) < ρ(S f (c2)) < i, so
c2 is an up cycle and c̃′ is a down cycle. Similarly, if c2 is a down cycle, then c1

is an up cycle and c̃′ is a down cycle. Finally, if both c1 and c2 are up cycles then
c̃′ is an up cycle. In all three cases we have nu(c) = nu(c′)+1 and nd(c) = nd(c′).
Thus

nu(c)+nu(c)= nu(c′)+nu(c′)+1 and nd(c)+nd(c)= nd(c′)+nd(c′)+1,

so the proposition holds by induction.
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Case B. Here {e} is not a cycle in T1. Then P ′(e,T1) = {Si−1, j+1,Si, j+1}. By
Theorem 2.2.3 (2b), there is a cycle c̃′ ∈ OC∗(T′

2) such that Sb(c̃′) = Si−1, j+1 and
S f (c̃′) = Si j. In particular c̃′ is a down cycle so the c.s.p.b. of Theorem 2.2.3 (2b)
implies nu(c) = nu(c′) and nd(c) = nd(c′)−1. By Proposition 2.2.4 (2b), there are
cycles c̃ ∈ OC∗(T1) and c1, c2 ∈ OC∗(T′

1) such that Sb(c1) = Sb(c̃), S f (c1) = Si j,
Sb(c2) = Si−1, j+1, and S f (c2) = S f (c̃). We now proceed as in the previous case,
finding nu(c) = nu(c′)−1 and nd(c) = nd(c′). Thus again the proposition is true
by induction.

4.2.3. DEFINITION. Let (T1,T2) ∈ TK (M1, M2) for K = B, C, or D. Let c be an
extended cycle in T1 relative to T2 and suppose either c is an closed cycle in T1
or Cy(c) ⊆ OC∗(T1). We say that c is an up extended cycle is either c is a closed
up cycle in T1 or nu(c)+nu(c) = nd(c)+nd(c)+2. Otherwise, we say that c is a
down extended cycle.

4.2.4. PROPOSITION. Let (T1,T2) and c be as in Definition 4.2.3. Set (T′
1,T′

2)=
E((T1,T2), c,L).
(1) If c is an up extended cycle, then

nh((T′
1,T′

2))= nh((T1,T2))+2 and nv((T′
1,T′

2))= nv((T1,T2))−2.

(2) If c is a down extended cycle, then

nv((T′
1,T′

2))= nv((T1,T2))+2 and nh((T′
1,T′

2))= nh((T1,T2))−2.

Proof. If c is a closed cycle in T1, then this is given by conditions (1) and (2)
of Propositions 3.3.10 and 3.3.11. If c is a union of open cycles in T1 with
Cy(c) ⊆ OC∗(T1), then this proposition is a consequence of Proposition 4.2.2 and
conditions (3) and (4) of Propositions 3.3.7 and 3.3.8.

4.2.5. REMARK. We have now proved the appropriate analogues of conditions
(3) and (4) of Propositions 3.3.7 and 3.3.8 for up and down extended cycles c with
Cy(c) ⊆ OC∗(T1). The relevant condition (5) of both propositions is also true via
induction. Conditions (1) and (2) can be modified as below. We state the result
for up extended cycles; analogous statements hold for down extended cycles.

4.2.6. PROPOSITION. Let (T1,T2) ∈ TK (M1, M2) for K = B, C, or D and let c
be an up extended cycle in T1 relative to T2. If ĉ ∈ Cy(c), then either ĉ is an up
cycle or there is an up cycle ĉ1 ∈ Cy(c) with ĉ nested in ĉ1. Let k = |Cy(c)| and
label the squares Sq(c)= {S1, . . . ,S2k} so that ρ(S1)< . . .< ρ(S2k), or equivalently,
κ(S1)> . . .> κ(S2k). Then
(1) S1 = S f (c′) for some c′ ∈ Cy(c) and S2k = Sb(c′′) for some c′′ ∈ Cy(c), and

(2) Si = S f (c′) for some c′ ∈ Cy(c) if and only if Si+1 = Sb(c′′) for some c′′ ∈ Cy(c).

Proof. The proof is by induction as for Proposition 4.2.2. The only difficulty arises
in Case A, so let e, (T′

1,T′
2), c1, c2, and c′ be as therein. Assume first that c1
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is an up cycle. Note that there is an even number of squares S ∈ Sq(c′) with
i +1 < ρ(S) < ρ(Sb(c1)), since any cycle in T2 with such an S as its forward or
back square is nested in c1. By (2) and induction, these alternate between back
and forward squares, so if we pick S ∈ Sq(c′) with ρ(S) maximal given that ρ(S)≤
ρ(Sb(c1)), then there is a ĉ2 ∈ Cy(c′) such that S = Sb(ĉ2). If ĉ2 is an up cycle, the
ĉ = {e} is nested in ĉ2, otherwise by induction ĉ2 is nested in some up cycle in c′
which then also nests {e}. We see that statement (2) is also satisfied by c. The
proof is similar when c2 is an up cycle. Finally, as in Proposition 4.2.2, we must
also consider the proof of the transpose of Case A. This is trivial for (1), and for
(2), it is the transposed proof.

Section 3

4.3.1. DEFINITION. Let w ∈ W ′ or w ∈ W". We define τL(w), τR(w) ⊆ Π′ as in
Definition 2.1.3 using α′ and s′1 is place of α1 and s1. We define DL

αβ
(W ′) and

DR
αβ

(W ′) for any pair of adjacent simple roots α,β ∈ Π′ as in Definition 2.1.4-1

and TL
αβ

and TR
αβ

as in Definition 2.1.4-2.

4.3.2. DEFINITION. Let γ ∈S (M1, M2).
(1) Suppose {1,2} ⊆ M1. Let k, l, ϵ1, and ϵ2, be such that {(1,k,ϵ1), (2, l,ϵ2)} ⊆ γ.

We say that α′
1 ∈ τL(γ) if either both k > l and ϵ1 = −1 or both k < l and

ϵ2 =−1; otherwise we say α′
1 ∉ τL(γ). We define analogously α′

1 ∈ τR(γ) and
α′

1 ∉ τR(γ) when {1,2}⊆ M2.

(2) For i ≥ 2, the statements αi ∈ τL(γ), αi ∉ τL(γ), αi ∈ τR(γ), and αi ∉ τR(γ) are
defined as in Definition 2.1.5.

(3) Suppose that either {1,2,3} ⊆ M1 and {α,β} = {α′
1,α3} or {i−1, i, i+1} ⊆ M1

and {α,β}= {αi,αi+1}. Then we define DL
αβ

(S (M1, M2)) and DR
αβ

(S (M1, M2))
as in Definition 2.1.7-1.

(4) If {α,β}= {α′
1,α3} and {1,2,3}⊆ M1 , we define

TL
αβ : DL

αβ(S (M1, M2))−→ DL
βα(S (M1, M2))

by setting Tαβ(γ)= γ′ where

{γ′}= {SCL(1;SCL(2;In(1,2;γ))),InL(2,3;γ)}∩DL
βα(S (M1, M2)).

As usual, TL
αβ

is a well-defined bijection with inverse TL
βα

.

(5) If {i−1, i, i+1}⊆ M1 and {α,β}= {αi,αi+1} with i ≥ 2, we define

TL
αβ : DL

αβ(S (M1, M2))−→ DL
βα(S (M1, M2))

as in Definition 2.1.7-2.
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(6) We define analogously the operators

TL
αβ : DR

αβ(S (M1, M2))−→ DR
βα(S (M1, M2)).

REMARK. All of the following properties of the τ-invariant also hold with R in
place of L:
(1) For w ∈W ′, we have τL(δ(w))= τR(w) and τR(δ(w))= τL(w). For w ∈ DL

αβ
(W ′)

we have δ(Tαβ(w))= Tαβ(δ(w)).

(2) If γ ∈S (M1, M2) and {1,2}⊆ M1, then α′
1 ∈ τL(γ) if and only if α′

1 ∉ τL(SC(γ)).

(3) If γ ∈ Dαβ(S (M1, M2)), then SC(γ) ∈ Dβα(S (M1, M2)) and

Tαβ(SC(γ))=SC(Tαβ(γ)).

REMARK. As noted in Remark 2.1.5, the notion of inclusion in a τ-invariant for
elements of S (M1, M2) is not defined as inclusion in a set, but rather as formal
statement. We remedy this as follows. Let M ⊂N∗ be a finite set. Define τ(M) as
a subset of {α′

1}∪ {αi | 1< i <∞} by
(1) α′

1 ∈ τ(M) if and only if {1,2}⊆ M, and

(2) for i > 1, αi ∈ τ(M) if and only if {i, i+1}⊆ M.
We then define, say, for γ ∈S (M1, M2), τL(γ) ⊆ τ(M1), adapting the previous def-
initions to this context in the obvious way. Strictly speaking, the τ-invariants of
this paper must consequently be distinguished from those in [5] and [6], but we
will neglect doing so.

4.3.3. DEFINITION. Let T ∈T (M) and suppose {1,2}⊆ M. We say that α′
1 ∈ τ(T)

if either:
(1) P(1,T)= {S1,1,S2,1} and P(2,T)= {S1,2,S2,2},

(2) P(1,T)= {S1,1,S1,2} and P(2,T)= {S2,1,S3,1}, or

(3) P(1,T)= {S1,1,S2,1} and P(2,T)= {S3,1,S4,1}.
Otherwise we say that α′

1 ∉ τ(T).

REMARK. With T as above, we have α′
1 ∈ τ(T) if and only if α′

1 ∉ τ(tT).

We will view the map A of Definition 1.2.1 as a bijection from S (M1, M2) to
TD(M1, M2) and write A(γ)= (L(γ),R(γ)). The following is obvious by inspection:

4.3.4. PROPOSITION. Suppose γ ∈S (M1, M2) and {1,2}⊆ M1. Then α′
1 ∈ τL(γ) if

and only if α′
1 ∈ τ(L(γ)) and α′

1 ∈ τR(γ) if and only if α′
1 ∈ τ(R(γ))

When {α,β} = {αi,αi+1} or {α′
1,α3}, we define the domains DL

αβ
(TD(M1, M2))

and DR
αβ

(TD(M1, M2)) as in Definition 2.1.11. When {α,β} = {αi,αi+1}, we also

adopt its subsequent definitions of TL
αβ

and TR
αβ

. When {α,β} = {α′
1,α3}, the defi-

nition is more intricate, as below:
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4.3.5. DEFINITION. Suppose {α,β}= {α′
1,α3}. We define

TL
αβ : DL

αβ(TD(M1, M2))−→ DL
βα(TD(M1, M2))

via several cases. Let (T1,T2) ∈ DL
αβ

(TD(M1, M2)).
(1) Suppose S2,2 ∉ P(2,T1)∪P(3,T1). Then we set TL

αβ
((T1,T2))= (In(2,3;T1),T2).

(2) Suppose P(1,T1)= {S1,1,S2,1}, P(2,T1)= {S1,2,S2,2}, and P(3,T1)= {S1,3,S1,4}.
Set (T1,T2) = E((T1,T2), ec(3,T1;T2),L). Let T′

1 = (T1 \ {(2,S2,2), (3,S1,3)})∪
{(2,S1,3), (3,S2,2)}. We then define

TL
αβ((T1,T2))= (T′

1,T2).

(3) Suppose P(1,T1)= {S1,1,S2,1}, P(2,T1)= {S1,2,S2,2}, and P(3,T1)= {S1,3,S2,3}.
Set T′

1 = (T1 \{(2,S2,2), (3,S1,3)})∪ {(2,S1,3), (3,S2,2)}. We then define

TL
αβ((T1,T2))=E((T′

1,T2), ec(3,T′
1;T2),L).

(4) In any of the settings not listed among (1)-(3), TL
αβ

((T1,T2)) is defined by the
rules TL

αβ
= (TL

βα
)−1 and t(TL

αβ
((T1,T2)))= TL

βα
(t(T1,T2)).

The operators TR
αβ

are defined an analogous manner.

REMARK. An alternate description of Tαβ((T1,T2)) in case (2) can be given as
follows. Let

H1 = {(1,S1,1), (1,S2,1), (2,S1,2), (2,S2,2), (3,S1,3), (3,S1,4)} and

H2 = {(1,S1,1), (1,S1,2), (2,S1,3), (2,S1,4), (3,S2,1), (3,S2,2)}.

Set T̃1 = (T1\H1)∪H2. Then TL
αβ

((T1,T2))=E((T̃1,T2), ec(3,T̃1;T2),L). Similarly,

in case (3), we set (T1,T2)=E((T1,T2), ec(3,T1;T2),L). Then TL
αβ

((T1,T2))= ((T1\

H1)∪H2,T2).

4.3.6. PROPOSITION. Let (T1,T2) ∈ DL
αβ

(TD(M1, M2)). We have

(T1,T2) ∈T ′(M1, M2) if and only if TL
αβ(T1,T2) ∈T ′(M1, M2).

The corresponding statement holds when L is replaced by R.

Proof. If {α,β}= {αi,αi+1} for some i ≥ 2, then this is clear from the definitions. If
on the other hand {α,β}= {α′

1,α3}, we also can use Proposition 4.2.4.

4.3.7. LEMMA. Let γ ∈ S (M1, M2) and suppose that 1 ∈ M1. Let γ′ = SCL(1;γ).
Then

A(γ′)=E(A(γ), ec(1,L(γ);R(γ)),L).

7



Proof. Let k and ϵ be such that (1,k,ϵ) ∈ γ. Assume first that k = sup M1. Let
γ= γ\ {(1,k,ϵ)}, so that γ′ = γ∪ {(1,k,−ϵ}. If γ=∅, then the lemma is obvious, so
assume otherwise.

Consider a nonempty T ∈ T (M) for some M, with 1 ∉ M. If we set (T1,P1) =
α((T,1,1)) and (T2,P2) = α((T,1,−1)), and if l ∈ M is such that (l,S1,1) ∈ T, then
we have P(1,T1) = {S1,1,S1,2}, P(l,T1) = {S2,1,S2,2}, P(1,T2) = {S1,1,S2,1}, and
P(l,T2)= {S1,2,S1,2}. For r ∈ M\{l} we have P(r,T1)= P(r,T2), and thus in partic-
ular P1 = P2. Applying this observation with L(γ) substituted for T, we find that
c(1,L(γ)) is a closed cycle consisting of two elements, that L(γ′)=E(L(γ), c(1,L(γ))),
and that R(γ′)=R(γ), as desired.

Now suppose that k ̸= sup M1. Then the lemma follows from the previous case
by repeated application of Proposition 2.3.2 (b).

4.3.8. THEOREM. Let {α,β}= {α′
1,α3}⊆Π′.

(1) Suppose γ ∈ DL
αβ

(S (M1, M2)). Then A(TL
αβ

(γ))= TL
αβ

(A(γ)).

(2) Suppose γ ∈ DR
αβ

(S (M1, M2)). Then A(TR
αβ

(γ))= TR
αβ

(A(γ)).

REMARK. When {α,β} = {αi,αi+1} with i ≥ 2, the corresponding theorem was
proved as Theorem 2.1.19

Proof of Theorem 4.3.8.
As usual, it suffices to prove the first part. Since TL

αβ
and TL

βα
are inverses,

we may assume that α = α3. For j ∈ M1, define k j and ϵ j by ( j,k j,ϵ j) ∈ γ. Set
γ= γ\ {( j,k j,ϵ j) | j ∈ {1,2,3}}. Let d < e < f be such that {d, e, f } = {k1,k2,k3}. Set
γ′ = TL

αβ
(γ). Then one of the following ten cases holds:

(1) γ⊇ {(1, f ,−1), (2, e,−1), (3,d,ϵ)} and γ′ = γ∪ {(1, e,1), (2, f ,1), (3,d,ϵ)}.

(2) γ⊇ {(1, e,−1), (2,d,ϵ), (3, f ,1)} and γ′ = γ∪ {(1, e,−1), (2, f ,1), (3,d,ϵ)}.

(3) γ⊇ {(1, f ,−1), (2,d,−1), (3, e,1)} and γ′ = γ∪ {(1,d,1), (2, f ,1), (3, e,1)}.

(4) γ⊇ {(1, f ,−1), (2,d,1), (3, e,1)} and γ′ = γ∪ {(1,d,−1), (2, f ,1), (3, e,1)}.

(5) γ⊇ {(1,d,ϵ), (2, f ,−1), (3, e,1)} and γ′ = γ∪ {(1,d,ϵ), (2, e,1), (3, f ,−1)}.
Cases (6)-(10) are obtained from (1)-(5) by replacing γ with SC(γ′). By Remarks
2.1.6-2 and 4.3.2-2 as well as Definition 4.3.5-4, we need only consider cases (1)-
(5).

In case (1), set γ1 = γ∪ {(1, e,−1), (2, f ,1), (3,d,ϵ)}. We observe directly that
A(γ) satisfies the hypothesis of case (3) of Definition 4.3.5, that L(γ1) = (L(γ) \
{(2,S2,2), (3,S1,3)})∪ {(2,S1,3), (3,S2,2)}, and that R(γ1)=R(γ). On the other hand,
Lemma 4.3.7 says that

A(γ′)=E(A(γ1), ec(1,L(γ1);R(γ1)),L).

Since c(3,L(γ1))= c(1,L(γ1)), case (1) is complete.
In case (2), set γ1 = γ∪ {(1, e,1), (2, f ,1), (3,d,ϵ)}. Adopting the notation from

Remark 4.3.5, we note that H1 ⊆ L(γ), L(γ1) = (L(γ) \ H1)∪H2, and that R(γ1) =
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R(γ). As in case (1), we have A(γ′)=E(A(γ1), ec(3,L(γ1);R(γ1)),L) and the rest of
the case follows by Remark 4.3.5.

The proof of case (3) follows the outline of case (1), provided that we let
γ1 = γ∪ {(1,d,−1), (2, f ,1), (3, e,1)}, and case (4) follows as case (2), letting γ1 =
γ∪ {(1,d,1), (2, f ,1), (3, e,1)}. In case (5), note that A(γ) falls within case (1) of
Definition 4.3.5, L(γ′)= In(2,3;L(γ)), and R(γ′)=R(γ).

Analogously to Proposition 3.1.2 we have

4.3.9. LEMMA. For any tableau T in the domain of Tα′
1α3 , there is a c.s.p.b.

between T and Tα′
1α3T.

Section 4

We now define a family of operators that extend the generalized τ-invariant to the
type D setting. They were originally introduced in [7] in the context of primitive
ideals, but the construction therein can be replicated on any set where one has
defined a τ-invariant and operators Tαβ based on a branched Dynkin diagram.

The first part of this section describes the action of the operators in the set-
tings of signed permutations and pairs of domino tableaux. The second shows
that these two definitions are compatible by verifying operators on signed per-
mutations and domino tableaux commute with the domino Robinson-Schensted
map A. Since in this paper most of the sets in question have left and right τ-
invariants as well as left and right operators Tαβ, we will similarly speak of
objects introduced here as being of left or right type. We begin by describing sets
which will become their domains.

4.4.1. DEFINITION. Suppose either X = W ′ or X = W" or X = S (M1, M2) with
{1,2,3,4} ⊆ M1 or X = TD(M1, M2) with {1,2,3,4} ⊆ M1. Let x ∈ X and suppose
{β,γ,δ} ∈Π′ with {β,γ,δ}= {α′

1,α2,α4}.
(1) We say x is of left type Aβ if {β,α3} ⊆ τL(x), {γ,δ}∩τL(x) =∅, and TL

γα3
(x) ̸=

TL
δα3

(x).

(2) We say x is of left type Bβ if {γ,δ} ⊆ τL(x), {β,α3}∩τL(x) =∅, and TL
α3γ

(x) ̸=
TL
α3δ

(x).

(3) We say x is of left type C if {β,γ,δ}⊆ τL(x), α3 ∉ τL(x), and TL
α3β

(x)= TL
α3γ

(x)=
TL
α3δ

(x).

(4) We say x is of left type D if α3 ∈ τL(x), {β,γ,δ}∩ τL(x) = ∅, and TL
βα3

(x) =
TL
γα3

(x)= TL
δα3

(x).

(5) If x is of left type Aβ or Bβ for some β ∈ {α′
1,α2,α4}, or it is of left type C or

D, we say that x is of left type 8.

(6) Suppose that {1,2,3,4} ⊆ M2. We define analogously right types Aβ, Bβ, C ,
D, and 8.
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REMARK. (1) We note that x is of left type C if and only if TL
α3β

(x) is of left
type D. Also, x is of left type Aβ if and only if TL

γα3
(x) is of left type Bδ.

Similarly with right in place of left.

(2) If w ∈W ′ or w ∈W", then w is of left (resp. right) type Aβ if and only if δ(w)
is of right (resp. left) type Aβ, and similarly for the other types. This follows
from Remarks 2.1.7-1 and 4.3.2-1.

(3) If γ ∈S (M1, M2), then γ is of left (resp. right) type Aβ if and only if A(γ) is
of left (resp. right) type Aβ, and similarly for the other types. This follows
from Propositions 2.1.18, 4.3.4, and Theorems 2.1.19 and 4.3.8.

In [7], we grouped type 8 modules into sets of ten or fourteen. Each set con-
sists of either one module each of type Aβ and Bβ for β ∈ {α′

1,α2,α4} and two each
of types C and D, or two modules each of the types Aβ and Bβ for β ∈ {α′

1,α2,α4},
one module of type C , and one module of type D. We will implement this grouping
by means of some operators, which, to each type C (resp, type D) object associate
a set consisting of one or two type Bβ (resp. Aβ) objects for β ∈ {α′

1,α2,α4}. Sim-
ilarly, we define maps from type Aβ objects to sets of type D objects, and from
type Bβ objects to sets of type C objects. We now define these correspondences
for the sets considered in Definition 4.4.1.

4.4.2. NOTATION. Let γ ∈ S (M1, M2). If {i − 1, i} ⊆ M1, we set sαiγ = siγ =
InL(i −1, i;γ). If {1,2} ⊆ M1, we define sα′

1
γ = s′1γ = SCL(1;SCL(2; (InL(1,2;γ)))).

If on the other hand {i − 1, i} ⊆ M2 or {1,2} ⊆ M2, we define γsαi and γsα′
1

by
replacing L with R in the above.

REMARK. We have δ(s′1γ) = δ(γ)s′1, δ(γs′1) = s′1δ(γ), δ(siγ) = δ(γ)si, and δ(γsi) =
siδ(γ).

4.4.3. DEFINITION. Let w ∈ W ′ or w ∈ S (M1, M2) and suppose that we have
labeled the roots {β,γ,δ}= {α′

1,α2,α4}⊆Π′.
(1) If w is of left type Aβ, we define

TL
Dβ(w)= {y ∈ {sβw, sα3 sγsδw, sα3 sδsα3 w, sα3 sγsα3 w} | y is of left type D}.

(2) If w is of left type Bβ, we define

TL
Cβ(w)= {y ∈ {sβw, sα3 sγsδw, sα3 sδsα3 w, sα3 sγsα3 w} | y is of left type C }.

(3) If w is of left type C , we define

TL
βC(w)= {y ∈ {sβw, sα3 sγsδw, sα3 sδsα3 w, sα3 sγsα3 w} | y is of left type Bβ}.

(4) If w is of left type D, we define

TL
βD(w)= {y ∈ {sβw, sα3 sγsδw, sα3 sδsα3 w, sα3 sγsα3 w} | y is of left type Aβ}.
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(5) If w is of right type Aβ, we define

TR
Dβ(w)= {y ∈ {wsβ,wsα3 sγsδ,wsα3 sδsα3 ,wsα3 sγsα3 } | y is of right type D}

and proceed to define TR
Cβ(w), TR

βD(w) and TR
βC(w) analogously.

REMARK. (1) If w ∈W ′ is of left type Aβ, we have δ(TL
Dβ

(w))= TR
Dβ

((δ(w)), and
similarly for the other types.

(2) Let γ ∈S (M1, M2). Then γ is of left type C if and only if SC(γ) is of left type
D, in which case SC(TL

βC(γ)) = TβD(SC(γ)). Similarly, γ is of left type Aβ if

and only if SC(γ) is of left type Bβ, in which case SC(TL
Dβ

(γ)) = TCβ(SC(γ)).
Similarly with right in place of left.

(3) Let γ ∈S (M1, M2). If γ is of left type Aβ, then γ ∈S ′(M1, M2) if and only if
TL

Dβ
(γ)⊆S ′(M1, M2), and similarly for the other types.

4.4.4. PROPOSITION. Adopt the notation of Definition 4.4.3.
(1) Let X = C or D, and Y = R or L. The sets of the form TY

βX (w) and TY
Xβ

(w)
consist of one or two elements. Furthermore,

(i) if TY
βX (w) = {w′}, then TY

Xβ
(w′) = {w,w"} with w" ̸= w′ and TY

βX (w") =
{w′}, and

(ii) if TY
βX (w)= {w1,w2} with w1 ̸= w2, then TY

Xβ
(w1)= TY

Xβ
(w2)= {w}.

(2) If w is of left type C , then TL
γD(TL

α3β
(w))= TL

α3γ
(w)). In particular, |TβC(w)| =

TL
γC(w)| = TL

δC(w)|, and similarly with D in place of C. If w is of left type C

and if TL
βC(w)= {w1,w2}, then

w2 = (TL
δα3

◦TL
α3β

◦TL
γα3

◦TL
α3δ

◦TL
βα3

◦TL
α3γ

)(w1).

If w is of left type D and if TL
βD(w)= {w1,w2}, then

w2 = (TL
α3δ

◦TL
βα3

◦TL
α3γ

◦TL
δα3

◦TL
α3β

◦TL
γα3

)(w1).

These statements also hold with right in place of left.

Proof. For W ′ when n = 4, these statements can be verified directly by explicit
case-by-case analysis. For W ′ > 4, they can be deduced from the n = 4 case using
[2, Exercise 3, §1]. Alternately, they follow from Theorem 2.15 and Proposition
4.4 of [7], regarding these results as statements about irreducible highest weight
modules. The statements for S (n,n) follow from this, using Remarks 2.1.7-1 and
4.4.2, and therefore for any S (M1, M2) by means of an obvious bijection.

We now proceed to describe the action of the operators defined above on the
tableaux pairs TD(M1, M2). Our first task is to simplify the characterization of
left types in the setting of domino tableaux.

11



4.4.5. NOTATION. We define certain subsets of F using the natural identifica-
tion with Young diagrams. For X ∈ {A,B,C,D}, let

F1
X = F2

X =

When X ∈ {A,B}, let

F3
X = F4

X =

And when X ∈ {C,D}, let

F3
X = F4

X =

We use the above shapes to replace the final condition in the definition of each
of the left types. The following can be verified easily from the definitions:

4.4.6. PROPOSITION. Let (T1,T2) ∈ TD(M1, M2) and suppose {1,2,3,4} ⊆ M1.
Then (T1,T2) is of left type Aα′

1
if and only if {α′

1,α3}⊆ τ(T1), {α2,α4}∩τ(T1)=∅,
and

⋃4
k=1 P(k,T1) ∈ {F i

A | 1 ≤ i ≤ 4}. The obvious analogue of this statement hold
for each of the other types.

In particular, the proposition implies that T1 determines the left type of the
pair (T1,T2), allowing us to abuse notation and speak of an individual domino
tableau as being of a particular left type itself. It is clear that whether a domino
tableau is of a particular left type can be determined by its first four dominos.
Furthermore, it turns out that specifying a left type for a domino tableau in
TD(4) together with a compatible shape from 4.4.5 determines the tableau itself
uniquely. We make this explicit in the following definition.

4.4.7. DEFINITION. We define a list of domino tableaux in TD(4), each deter-
mined by a specific shape and left type. For 1 ≤ j ≤ 4 and β ∈ {α′

1,α2,α4} we
require tableaux

(A j
β
,φD) of type Aβ and Shape(A j

β
)= F j

A ,

(B j
β
,φD) of type Bβ and Shape(B j

β
)= F j

B,

(C j,φD) of type C and Shape(C j)= F j
C ,

and (D j,φD) of type D and Shape(D j)= F j
D .
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If we write A j
1 in lieu of A j

α′
1

and condense notation in a similar fashion for

the other types and roots, the sought-after tableaux are given by

A1
1 =

1 2 4

3
A2

1 =
1 2

4

3 A3
1 =

1 2
4

3
A4

1 =
1 2 4

3

A1
2 =

1
4

2

3
A2

2 =
1 4
2
3 A3

2 =
1 4
2

3
A4

2 =
1

4
2
3

A1
4 =

1
2
3

4
A2

4 =
1 2
3
4 A3

4 =
1 2
3

4
A4

4 =
1

2
3

4

B1
1 =

1
3

2

4
B2

1 =
1 3
2
4 B3

1 =
1 3
2

4
B4

1 =
1

3
2
4

B1
2 =

1 2 3

4
B2

2 =
1 2

3

4 B3
2 =

1 2
3

4
B4

2 =
1 2 3

4

B1
4 =

1 3 4

2
B2

4 =
1 4

2 3 B3
4 =

1 3
4

2
B4

4 =
1

4
2 3

C1 =
1

3
4

2
C2 =

1 3

2 4 C3 =
1

3

4
2

C4 =
1 3

2
4

D1 =
1

2
4

3
D2 =

1 2

3 4 D3 =
1

2

4
3

D4 =
1 2

3
4

When A j
1 ⊆T, we define Re(A, X ;T)= (T\ A)∪X , where X = D j. Analogously,

we define the other obvious variations of this. As usual, we are abusing notation
here so that for T= (T,φD) we write A j

1 ⊆T in place of A j
1 ⊆ T.
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4.4.8. LEMMA. Consider (T1,T2) ∈ TD(M1, M2) and suppose that either C j or
D j ⊆ T1 for some j. Write Y for the latter set of dominos. If T′

1 = Re(Y , X ,T1),
where X ∈ {A j

1, A j
2, A j

4,B j
1,B j

2,B j
4}, then

3 ∈ ec(4,T1;T2) if and only if 3 ∉ ec(4,T′
1;T2).

Proof. This can be observed directly when |M1| = 4. Otherwise, the argument is
by induction using Proposition 2.3.3 (b), as in the proof of Remark 2.3.4.

Analogously to Proposition 3.1.3, we have

4.4.9. LEMMA. With notation as in the previous lemma, we have a c.s.p.b. be-
tween open cycles in T1 not containing 3 or 4 and open cycles in T′

1 not containing
3 or 4. This extends to a c.s.p.b. between all the open cycles in T1 and those in
T′

1 if either c(4,T1) is closed or 3 ∈ c(4,T1). Otherwise the Sb squares of c(3,T1)
and c(4,T′

1) coincide and likewise for the S f squares of the same cycles.

We are ready to describe the action of the operators of this section on pairs of
domino tableaux.

4.4.10. DEFINITION. Let (T1,T2) ∈TD(M1, M2) and suppose it is of left type C .
Let j be such that C j ⊆T1.
(1) Suppose 4 ∈ ec(3,T1;T2). Then j ∈ {1,2}. Let T′

1 = Re(C j,B j
1;T1). Set ck =

ec(k,T′
1;T2) for k ∈ {3,4}, and note that by Lemma 4.4.8, c3 ̸= c4.

(a) If nh(C j)= nh(B j
1), we define

TL
α′

1C((T1,T2))= {(T′
1,T2),E((T′

1,T2); {c3, c4},L)}.

(b) If nh(C j) ̸= nh(B j
1), we define

TL
α′

1C((T1,T2))= {E((T′
1,T2), c3,L),E((T′

1,T2), c4,L)}.

(2) Suppose 4 ∉ ec(3,T1;T2).

(a) If nh(C j)= nh(B j
1) and j ∈ {1,2}, we define

TL
α′

1C((T1,T2))= {Re(C j,B j
1;T1),T2)}.

(b) If nh(C j) ̸= nh(B j
1) and j ∈ {1,2}, we define

TL
α′

1C((T1,T2))= {E((T′
1,T2), ec(3,T′

1;T2),L)}.

(c) If j ∈ {3,4}, we let k ∈ {1,2} be such that nh(Ck) ̸= nh(Bk
1), and we

let l ∈ {3,4} be such that E(C j, c(l,C j)) = Ck, where C j = (C j,φD).
We set (T′

1,T′
2)=E((T1,T2), ec(l,T1;T2),L), and define

TL
α′

1C((T1,T2))= {Re(Ck,Bk
1 ;T′

1),T′
2)}.
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Each of the other maps of this type are defined using obvious analogues of the
above.

REMARK. (1) The statements of Proposition 4.4.4 hold for the maps defined in
Definition 4.4.10.

(2) Let Y ∈TD(M1, M2). Then Y is of left type C if and only if tY is of left type
D. If Y is of left type C , then t(TL

βC(Y )) = TL
βD(tY ). Similarly, if Y is of left

type Aβ, then t(TL
Dβ

(Y ))= TL
Cβ(tY ). Similarly with right in place of left.

(3) Let Y ∈ TD(M1, M2). If Y is of left type Aβ, then Y ∈ T ′
D(M1, M2) if and

only if TL
Dβ

(Y ) ⊆ T ′
D(M1, M2), and similarly for the other types. This uses

Proposition 4.2.4.

4.4.11. PROPOSITION. Let γ ∈S (M1, M2) and let β ∈ {α′
1,α2,α4}.

(1) (a) If γ is of left type Aβ, then TL
Dβ

(A(γ))= A(TL
Dβ

(γ)).

(b) If γ is of left type Bβ, then TL
Cβ(A(γ))= A(TL

Cβ(γ)).

(c) If γ is of left type C , then TL
βC(A(γ))= A(TL

βC(γ)).

(d) If γ is of left type D, then TL
βD(A(γ))= A(TL

βD(γ)).

(2) Analogous statements hold with right in place of left.

Proof. As usual it suffices to prove (1). In fact, using Proposition 4.4.4, Remark
4.4.10(1), and Theorems 2.1.19 and 4.3.8, it suffices to prove (1)(d). Further, it is
enough to prove that given γ ∈S (M1, M2) of left type D, there is an η ∈ {α′

1,α2,α4}
and a γ′ ∈ TL

ηD(γ) such that A(γ′) ∈ TL
ηD(A(γ)). So assume γ is of left type D.

Define for j ∈ M1, k j and ϵ j by ( j,k j,ϵ j) ∈ γ. Let d < e < f < g be such that
{d, e, f , g}= {k1,k2,k3,k4}. There are sixteen cases. We list the first eight:
(1) γ⊆ {(4,d,ϵ), (1, e,−1), (2, f ,1), (3, g,−1)}

(2) γ⊆ {(4,d,ϵ), (1, e,−1), (3, f ,−1), (2, g,1)}

(3) γ⊆ {(1,d,−1), (4, e,1), (2, f ,1), (3, g,−1)}

(4) γ⊆ {(1,d,−1), (4, e,−1), (3, f ,−1), (2, g,1)}

(5) γ⊆ {(1,d,−1), (4, e,1), (3, f ,−1), (2, g,1)}

(6) γ⊆ {(1,d,−1), (3, e,−1), (4, f ,1), (2, g,1)}

(7) γ⊆ {(1,d,1), (4, e,1), (3, f ,−1), (2, g,1)}

(8) γ⊆ {(1,d,1), (3, e,−1), (4, f ,1), (2, g,1)}
Cases (9)-(16) are obtained from the above by replacing γ with s3(SC(γ)) =

SC(s3γ). Using Remarks 2.1.6 (2), 4.4.3(2), and 4.4.10(2), together with the re-
sults cited at the beginning of this proof, we see that is suffices to verfiy the the-
orem in the first eight cases. In the first six cases, we observe that s2γ ∈ TL

α2D(γ),
that D1 ⊆ L(γ), that L(s2γ) = Re(D1, A1

2;L(γ)), and that R(s2γ) = R(γ). That is,
we have A(s2γ) ∈ TL

α2D(A(γ)), as desired. In cases (7) and (8), we observe that
D4 ⊆ L(γ) and set γ1 = SCL(1,γ). Then by Lemma 4.3.7 and using the fact that
c(1,L(γ)) = c(3,L(γ)), we have A(γ1) = E(A(γ), ec(3,L(γ);R(γ)),L). In particular,
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D1 ⊆ L(γ1). Now we observe that s′1γ ∈ TL
α′

1D(γ), that L(s′1γ) = Re(D1, A1
1;L(γ1)),

and that R(s′1γ)=R(γ1). That is, we have A(s′1γ) ∈ TL
α′

1D(A(γ)), as desired.

The proof of Proposition 3.1.4 shows that this result extends word for word to
type D. Now Proposition 3.1.5 also carries over to type D and applies in addition
to the operator Tα′

1α3 , with the same proof. So does Proposition 3.1.6, replacing
its hypothesis by the hypothesis that (T1,T2) be of left type C , the operator Tαβ

by TL
α′

1,C , and replacing the domino labels 1,2 throughout by 3,4, respectively.

Section 5

4.5.1. DEFINITION. We write Π∗ =Π′∪ {A,B,C,D} and say that

Σ= (α1,β1), . . . , (αk,βk)

is a sequence or Π∗ if for each i either {αi,βi} is a pair of adjacent simple roots in
Π′ or {αi,βi} = {X ,α} for some X ∈ {C,D} and α ∈ {α′

1,α2,α4}. Analogous to Defi-
nition 3.2.1, we define the composition of operators TL

Σ and TR
Σ for such a Σ. We

also carry over to this situation the analogues of any other notation introduced
in Definition 3.2.1 and Definition 3.2.5.

REMARK. Suppose Σ is a sequence for Π∗ and (T1,T2) ∈TD(M1, M2) with M1 =
{1, . . . ,n}. If (T′

1,T′
2) ∈ TL

Σ ((T1,T2)), then nv((T′
1,T′

2)) ≡ nv((T1,T2)) (mod 4). The
purpose of this section is to prove an analogue of Theorem 3.2.2.

4.5.2. THEOREM. Suppose (T1,T2) and (T′
1,T′

2) ∈TD(M1, M2) with M1 = {1, . . . ,n}
and suppose S(T2) = S(T′

2) and nv((T′
1,T′

2)) ≡ nv((T1,T2)) (mod 4). Then there is
a sequence Σ for Π∗ such that (T′

1,T′
2) ∈ TL

Σ ((T1,T2)).

In broad outline, our proof of Theorem 4.5.2 will follow that of Theorem 3.2.2
as closely as possible. We will prove first Proposition 4.5.8 and Lemma 4.5.9, the
analogues of Proposition 3.2.4 and Lemma 3.2.9. The latter used as main ingre-
dients Lemmas 3.2.6, 3.2.7, and 3.2.8. The analogues of Lemmas 3.2.6 and 3.2.7
obtained by simply replacing TC(M1, M2) by TD(M1, M2) and Π by Π∗ are easily
verified and we will use them here citing them by their original numbers. On
the other hand, the analogue to Lemma 3.2.8, though valid, is useless because of
the parity condition nv((T′

1,T′
2))≡ nv((T1,T2)) (mod 4) in Theorem 4.5.2. We will

replace it with a combination of Propositions 4.5.4 and 4.5.6. This combination is
less powerful than the original, so as a result, the proofs of Proposition 4.5.8 and
Lemma 4.5.9 will have many more special cases than the originals.

4.5.3. DEFINITION. We say a set F ⊆F is proper if there is a tableau T in some
T (M) such that F =Shape(T). Let

F0 = .
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We say a set F ⊆ F is reducible to F0 if F is proper and if either F = F0 or
inductively, there is an extremal position P in F such that F \ P is reducible to
F0. If T ∈TD(M) for some M and if Shape(T) is reducible to F0, then we say that
T is reducible to F0.

REMARK. If T ∈T (M) and if P is an extremal position in T, then Shape(T)\ P
is proper, since for example Shape(T)\ P =Shape(T ′), where (T ′,v,ϵ)=β((T,P)).

4.5.4. PROPOSITION. Suppose T ∈TD(M) and write F =Shape(T).
(1) If T is special and S2,2 ∈Shape(T), then T is reducible to F0.

(2) Suppose that there are sets P1, . . . ,Pk such that for each 1 ≤ j ≤ k, P j is an
extremal position in F \

⋃ j−1
r=1 Pr, and such that F \

⋃k
r=1 Pr is special and

contains S2,2. Then T is reducible to F0.

(3) If T is special, S2,2 ∈ Shape(T), P is a boxed set in extremal position in F,
and S2,2 ̸∈ P, then F \ P is special and is reducible to F0.

Proof. We prove (1) by induction on |M|. When |M| = 2 the result is clear as
Shape(T) = F0, so assume |M| > 2. Let k = κ1(T). Since T is special, k is even
and consequently k ≥ 2. Let u = ρk−1(T). If ρk−1(T) = ρk(T), then we set P =
{Sk−1,u,Sk,u}. If ρk−1(T)> ρk(T), then the fact that T special implies that both are
odd, so we set P = {Sk−1,u−1,Sk−1,u}. Then P is boxed and Shape(T)\P is special.
Finally, S2,2 ∉ P, since otherwise our choice of P would imply that |M| = 2. Hence
by induction, we are done. Statements (2) and (3) follow from (1).

4.5.5. PROPOSITION. Let T ∈ TD(M) as suppose T is reducible to F0. Then
there is a T′ ∈ TD(M) such that Shape(T′) = Shape(T) and nv(T′) ≡ nv(T)+ 2
(mod 4).

Proof. The proof is by induction of |M|. When |M| = 2, the proposition is ob-
vious, so assume |M| > 2. Write M = {m1, . . . ,mr} with m1 < ·· · < mr. Let P
be an extremal position in T such that Shape(T) \ P is reducible to F0. Now
let (T1,v,ϵ) = β((T,P)). Let i be such that v = mi, and let T2 ∈ TD(M \ {e}) be
the tableau obtained from T1 by replacing m j+1 with m j for each i < j < r−1.
Since Shape(T2) = Shape(T1) = Shape(T) \ P, we have that T2 is reducible to F0,
so by induction there is a T3 ∈ TD(M \ {mr}) with Shape(T3) = Shape(T2) and
nv(T3) ≡ nv(T2)+2 (mod 4). Now if P is horizontal and ϵ = −1, or if p is verti-
cal and ϵ = 1, then we set T′ = Adj(T2,P,mr). If P is horizontal and ϵ = 1, or
if P is vertical and ϵ = −1, then we set T′ = Adj(T3,P,mr). In all cases we have
Shape(T′)=Shape(T) and Proposition 4.1.3 shows that nv(T′)≡ nv(T)+2 (mod 4).

4.5.6. PROPOSITION. Let T ∈ TD(M) and let P be an extremal position in T.
Suppose Shape(T) \ P is reducible to F0. Then there is a T′ ∈ TD(M) such that
P(sup M,T′)= P, Shape(T′)=Shape(T), and nv(T′)≡ nv(T) (mod 4).
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Proof. Write M = {m1, . . . ,mr} with m1 < ·· · < mr. Let (T1,v,ϵ)=β((T,P)). Let i be
such that v = mi, and let T2 ∈TD(M\{mr}) be the tableau obtained from T1 by re-
placing m j+1 with m j for each i ≤ j ≤ r−1. Since T\P is reducible to F0, we have
that T2 is reducible to F0, so we apply Lemma 4.5.5 to obtain a T3 ∈TD(M\{mr})
with Shape(T3) = Shape(T2) and nv(T3) ≡ nv(T2)+2 (mod 4). If P is horizontal
and ϵ = 1, or if P is vertical and ϵ = −1, then we set T′ = Adj(T2,P,mr). If P is
horizontal and ϵ=−1 or if P is vertical and ϵ= 1, then we set T′ =Adj(T3,P,mr).
Proposition 4.1.3 shows that nv(T′)= nv(T), and it is clear that our other require-
ments for T′ are also satisfied.

More precisely, the only tableau shapes for which the conclusion of Proposi-
tion 4.5.6 fails correspond to partitions of the form (2k+1,3,12l) or (2k,22,12l) or
(2k,2) or (22,12l) in exponential notation, for some k ≥ 1 and l ≥ 0. We next prove
a special case of Theorem 4.5.2.

4.5.7. LEMMA. Suppose (T1,T2) and (T′
1,T′

2) are pairs of domino tableaux in
TD(M1, M2) with M1 = {1, . . . ,n}. Suppose further that S(T2)=S(T′

2), nv((T′
1,T′

2))≡
nv((T1,T2)) (mod 4), and S2,2 ∉ Shape(T1). Then there is a sequence Σ for Π∗
\{α′

1} such that
(T′

1,T′
2)= TL

Σ ((T1,T2)).

Proof. We first note that our hypotheses in fact imply not only that S(T2)=S(T′
2),

but in fact, T′
2 = T2 and that nv((T1,T2)) = nv((T′

1,T′
2)). We proceed by induc-

tion on n. Note that when n = 1 and n = 2 the result is trivial since in fact we
must have (T′

1,T′
2) = (T1,T2). So suppose that n ≥ 3, letting P = P(nT1) and

P ′ = P(n,T′
1).

Assume first that P = P ′. Using Definition 3.2.5, we let

(T1,T2)= (T1,T2)−L and (T
′
1,T

′
2)= (T′

1,T′
2)−L.

Note that T
′
2 = T2. By induction, there is a sequence Σ for Π′ \ {α′

1,αn} such
that (T

′
1,T

′
2) = TL

Σ ((T1,T2)). Set (T1
1,T1

2) = TL
Σ ((T1,T2)). Since Σ is a sequence for

Π′ \ {α′
1,αn}, we have P(n,T1

1) = P(n,T1) and T1
2 = T2. Consequently (T1

1,T1
2) =

(T′
1,T′

2) and the lemma holds in this case.
Now assume P ̸= P ′. For simplicity we assume further that P is horizontal;

the argument is analogous when P is vertical. Hence P = {S1,r−1,S1,r} where
r = ρ1(T1), and P ′ = {Sk−1,1,Sk,1}, where k = κ1(T1). If r ≥ 5 or if r = 4 and
k = 3, set P1 = {S1,r−3,S1,r−2}, otherwise set P1 = {Sk−3,1,Sk−2,1}. Let (T1,T2) =
(T1,T2)−L. By inspection, there is a tableau T ∈TD(n−1) such that Shape(T)=
Shape(T1), P(n− 1,T) = P ′, and P(n− 2,T) = P1. It is also clear that nv(T) =
nv(T1). By induction there is a sequence Σ1 for Π′ \ {α′

1,αn} such that (T,T2) =
TL
Σ ((T1,T2)). Let (T1

1,T1
2) = TL

Σ ((T1,T2)). Then T1
2 = T2. Let Σ2 = (αn,αn−1) and

let (T2
1,T2

2) = TL
Σ2

((T1
1,T1

2)). Then T2
2 = T1

2 and P(n,T2
1) = P(n,T′

1). By the case of
the lemma we have already proved, there is a sequence Σ3 for Π′ \ {α′

1,αn} such
that TL

Σ3
((T2

1,T2
2))= (T′

1,T′
2). Setting Σ=Σ1Σ2Σ3 verifies the lemma in this case.
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4.5.8. PROPOSITION. Let (T1,T2) ∈ TD(M1, M2) with M1 = {1, . . . ,n} and sup-
pose that S2,2 ∈ Shape(T1). Then there is a sequence Σ for Π∗ and (T′

1,T′
2) ∈

TL
Σ ((T1,T2)) such that T′

2 is special.

Proof. The proof uses induction on n. Note that the case n = 0 is trivial and
assume by induction that both Theorem 4.5.2 and Proposition 4.5.8 are true when
M1 = {1, . . . ,n−1}. We first assume that the square S2,2 ∈ P(n,T1). Let r = ρ1(T1)
and k = κ1(T1) and suppose that T2 is not special. Then one of the following
holds:
(1) P(n,T1)= {S2,1,S2,2},

(2) P(n,T1)= {S2,2,S3,2} and r = 2,

(3) P(n,T1)= {S2,2,S3,2} and r > 2, or

(4) P(n,T1)= {S2,2,S2,3} and r is even.
We first specify Σ in a few low rank cases. If n = 3 and we are in case (1), then
Σ = (α′

1,α3) satisfies the requirements of the proposition. If n = 3 and we are in
case (1), then we set Σ = (α3,α′

1). When n = 4 and we are in case (3) or (4), then
(T1,T2) ∈ Dα,X (TD(M1, M2)) for some X ∈ {C,D} and every α ∈ {α′

1,α2,α4}. Either
Σ= (α′

1, X ) or (α2, X ) will satisfy the requirement of the proposition.
Now assume that we are not in one of the cases treated above. The sequence

Σ will be specified as a composition in several steps. We begin by specifying
pairs of squares P1 and P2. In case (1) and n ≥ 4, we note that r ≥ 6 and set
P1 = {S1,r−1,S1,r} and P2 = {S1,r−3,S1,r−2}. In case (2) we set P1 = {Sk−1,1,Sk,1}
and P2 = {Sk−3,1,Sk−2,1}. In cases (3) and (4) and r ≥ 5 we let P1 and P2 be as in
case (1), otherwise let P1 and P2 be as in case (2).

Now let (T1,T2)= (T1,T2)−L and let T
1
1 ∈TD(n−1) be such that Shape(T

1
1)=

Shape(T1), P(n−1,T
1
1)= P1, and P(n−2,T

1
1)= P2. It is clear that such a T

1
1 exists

and that nv(T
1
1) = nv(T1). Set T

1
2 = T2. But now S2,2 ∉ Shape(T1), so by Lemma

4.5.7, there is a sequence Σ1 for Π′\{α′
1,αn} such that (T

1
1,T

1
2)= TL

Σ1
((T1,T2)). Let

(T1
1,T1

2)=TL
Σ1

((T1,T2)). Then let Σ2 be such that Σ2 = (α,β) with {α,β}= {αn−1,αn}

and TL
Σ2

((T1
1,T1

2)) ̸=∅, and set (T2
1,T2

2) = TL
Σ2

((T1
1,T1

2)). Let (T
2
1,T

2
2) = (T2

1,T2
2)−L.

Then S2,2 ∈ Shape(T
2
1), so by induction there is a sequence Σ3 for Π∗ \ {αn} and

a (T
′
1,T

′
2) ∈ TL

Σ3
((T

2
1,T

2
2)) such that T

′
2 is special. Let (T′

1,T′
2) ∈ TL

Σ3
((T2

1,T2
2)) be

such that (T′
1,T′

2) = (T
′
1,T

′
2)−L. Then, as is easily seen using Lemma 3.2.7 (1),

we have that T
′
1 is special, so setting Σ = Σ1Σ2Σ3 verifies the conclusion of the

proposition.
Henceforth assume that S2,2 ∉ P(n,T1). We begin as in the proof of Proposi-

tion 3.2.4, that is, we let (T1,T2)= (T1,T2)−L. By induction, there is a sequence
Σ1 for Π∗ \ {αn} and a (T

1
1,T

1
2) ∈ TL

Σ1
((T1,T2)) with T

1
2 special. By Lemma 3.2.6,

there is a (T1
1,T1

2) ∈ TL
Σ1

((T1,T2)) such that (T
1
1,T

1
2) = (T1

1,T1
2)−L. Now clearly

either T1
2 is special, or P(n,T1

1) is unboxed and {n} forms and extended cycle in
T1

1 relative to T1
2. In the former case we are done, so we assume the latter. Set

P = P(n,T1
1). Since S2,2 is φD-fixed, Lemma 3.2.7 (1) implies that S2,2 ∉ P.
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The rest of the proof will follow the general outline of Proposition 3.2.4, al-
though lacking Proposition 3.1.10, we will treat separately the situations where
P is horizontal and P is vertical. The proof proceeds by a case-by-case analy-
sis. For the most part, the cases we consider parallel those of the proof Proposi-
tion 3.2.4 and are numbered accordingly. In cases (1)-(6), we define positions
P1 and P2 and appeal to Propositions 4.5.4 and 4.5.6 to construct a tableau
T

2
1 ∈ TD(n−1) with Shape(T

2
1) = Shape(T

1
1), P(n−1,T

2
1) = P1, P(n−2,T

2
1) = P2,

and nv(T
2
1) ≡ nv(T

1
1) (mod 4); the rest of the proof in these cases will follow as in

the proof of Proposition 3.2.4. Cases (3a) and (7) will parallel case (7) of the proof
of Proposition 3.2.4 and will be treated directly. Finally, cases (3’a) and (6’a) will
require a different approach.

Assume first that P is horizontal and set P = {Si j,Si, j+1}. Then φD(Si j) = Y
and both i and j are odd. First assume i ≥ 3 and set r = ρ i−2(T1

1) and s = ρ i−1(T1
1).

Case 1. Here r > s. As in case (1) of the proof of Proposition 3.2.4, we have
r ≥ s+2 and s ≥ j+2. We set P1 = {Si−2,r−1,Si−2,r}. If i ≥ 5, or if i = 3 and s > 3,
we set P2 = {Si−1,s−1,Si−1,s}. If i = 3 and s = 3 and r > 5, so in fact r ≥ 7, we let
P2 = {Si−2,r−3,Si−2,r−2}. Finally, if i = 3, s = 3, and r = 5, we set P2 = {S1,3,S2,3}.

Case 2. Here r = s > j+1. We set P1 = {Si−2,r,Si−1,r}. If i ≥ 5, or if i = 3 and
r > 3, we set P2 = {Si−2,r−1,Si−1,r−1}. If i = 3 and r = 3, then n = 4. If nv(T1

1) = 3,
we define P2 as before, otherwise let P2 = {S2,1,S2,2}.

Case 3. Here r = s = j+1 and we assume further that either i ≥ 5 or i = 3 and
j > 1. Let P1 and P2 be as in the first part of case (2).

Case 3a. Here r = s = j+1, i = 3, and j = 1 and we can specify the sequence Σ
more directly. We have that either

T1
1 =

1
2
3 or T1

1 =
1 2

3 .

In the first case, we set Σ2 = (α′
1,α3), in the second Σ2 = (α2,α3), (α3,α′

1). Then
Σ=Σ1Σ2 satisfies the requirements of the proposition.

In the next four cases we are still operating under the assumption that P is
horizontal, but now i = 1 and r as well as s will be redefined as needed.

Case 4. Here S3, j−1 ∈Shape(T1
1). Let r = κ j−1(T1

1). Then because T
1
1 is special,

we know that r is even, and in particular, r ≥ 4. If j > 3, or if j = 3 and r ≥
6, we let P1 = {Sr−1, j−1,Sr, j−1} and P2 = {Sr−3, j−1,Sr−2, j−1}. If j = 3 and r = 4,

we set k = κ1(T1
1) and note that k is even since T

1
1 is special. If k ≥ 6, we set

P1 = {Sk−1,1,Sk,1} and P2 = {S3,2,S4,2}. If k = 4, we set P1 = {S4,1,S4,2} and P2 =
{S3,1,S3,2}.

Case 5. Here S3, j−1 ∉Shape(T1
1) and S3, j−2 ∈Shape(T1

1). If j > 3, so that j ≥ 5,
we define P1 and P2 as in case (5) of the proof of Proposition 3.2.4. If j = 3, we
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set k = κ1(T1
1) and note that k is again even. We set P1 = {Sk−1,1,Sk,1}. If k ≥ 6,

we set P2 = {Sk−3,1,Sk−2,1}. If k = 4, then n = 4, and we have to account for the

number of horizontal dominos. If nh(T
1
1)= 2, we set P2 = {S2,1,S2,2}; if nh(T

1
1)= 0,

we set P2 = {S1,2,S2,2}.

Case 6. Here S3, j−2 ∉ Shape(T1
1) and j > 3, so that j ≥ 5. We set P1 =

{S2, j−2,S2, j−1} and P2 = {S1, j−2,S1, j−1}.

Case 7. Here j = 3 and S3,1 ∉ Shape(T1
1) and we can specify the sequence Σ

more directly. We have that either

T1
1 =

1 3
2 or T1

1 =
1 2

3
.

In the first case we set Σ2 = (α3,α2), (α′
1,α3), in the second we set Σ2 = (α3,α′

1).
Then Σ=Σ1Σ2 satisfies the requirements of the proposition.

This exhausts the cases when P is horizontal and henceforth we suppose that
P is vertical, setting P = {S ji,S j+1,i}. We note φD(S ji) = Z which under our as-
sumptions implies that both i and j are even. For the first three cases we will
assume that i ≥ 4 and set r = κi−2(T1

1) and s = κi−1(T1
1).

Case 1′. Here r > s, and as in case (1), we have r ≥ s+2 and s ≥ j+2. We set
P1 = {Sr−1,i−2,Sr,i−2} and P2 = {Ss−1,i−1,Ss,i−1}.

Case 2′. Here r = s > j+1. We define the domino positions P1 = {Sr,i−2,Sr,i−1}
and P2 = {Sr−1,i−2,Sr−1,i−1}.

Case 3′. Here r = s = j+1, and setting k = κ1(T1
1) and t = ρ1(T1

1), we require
further that either i ≥ 6, j ≥ 4, k > 4, or t > 5. If i ≥ 6 or j ≥ 4, we let P1 and P2 be
as in case 2′. Now assume that i = 4 and j = 2. Since T

1
1 is special, we know that

k is even and t is odd. If k > 4, we set P1 = {S3,2,S3,3} and P2 = {Sk−1,1,Sk,1}. If
k = 4 and t > 5, we let P1 = {St−1,1,St,1} and P2 = {St−3,1,St−2,1}.

Case 3′a. Here i = 4, j = 2, κ1(T1
1) = 4, and ρ1(T1

1) = 5. We cannot apply the
standard argument to this case as the hypotheses of Proposition 4.5.6 do not hold
at one of the steps, so we address it directly. Let T be the tableau:

T=
1

2 4
5

3
6

If nh(T
1
1) = 4, set (T

2
1,T

2
2) = (T,T

1
2). If on the other hand we have nh(T

1
1) =

2, set (T
2
1,T

2
2) = E((T,T

1
2), ec(1,T;T

1
2),L). Then S(T

2
2) = S(T

1
2) and nv((T

2
1,T

2
2)) =

nv((T
1
1,T

1
2)), where we appeal to Proposition 4.2.4 for the latter if necessary.

By induction on Theorem 4.5.2, there is a sequence Σ2 for Π∗ \ {α7} such that
(T

2
1,T

2
2) ∈ TL

Σ2
((T

1
1,T

1
2)). Let (T2

1,T2
2) ∈ TL

Σ2
((T1

1,T1
2)) be such that (T

2
1,T

2
2)= (T2

1,T2
2)−
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L. Let Σ3 = (α7,α6) and define (T3
1,T3

2) = TL
Σ3

((T2
1,T2

2)). Further, let (T
3
1,T

3
2) =

(T3
1,T3

2)−L. Then by induction on Proposition 4.5.8, there is a sequence Σ4 for

Π∗ \ {α7} and a (T
′
1,T

′
2) ∈ TL

Σ4
((T

3
1,T

3
2)) such that T

′
2 is special. Let (T′

1,T′
2) ∈

TL
Σ4

((T3
1,T3

2)) be such that (T
′
1,T

′
2) = (T′

1,T′
2)−L. Using Lemma 3.2.7-1 and the

fact that S4,2 ∉ Shape(T′
1), we have that P(7,T′

1) is {S3,2,S3,3}, so T′
1 is special.

That is, Σ=Σ1Σ2Σ3Σ4 satisfies the requirement of the proposition.

In the remaining cases we have i = 2. Since j must be even and we have
assumed that S2,2 ∉ P(n,T1) and consequently S2,2 ∉ P(n,T1

1), we have that j ≥ 4.

Case 4′. Here S j−1,4 ∈ Shape(T1
1). Let t = ρ j−1(T1

1) and note that since T
1
1

has special shape, t must be odd and consequently t ≥ 5. We define the domino
positions P1 = {S j−1,t−1,S j−1,t} and P2 = {S j−1,t−3,S j−1,t−2}.

Case 5′. Here S j−1,4 ∉ Shape(T1
1) but S j−2,4 ∈ Shape(T1

1). We proceed as in
case 5, but transposing everything.

Case 6′. Here S j−2,4 ∉ Shape(T1
1), and letting k = κ1(T1

1) and t = ρ1(T1
1), we

further assume that either j > 4, j = 4 and k > 6, or j = 4, k = 6, and t ≥ 5. If
j > 4, we set P = {S j−2,3,S j−1,3} and P2 = {S j−2,2,S j−1,2}. If j = 4 and k > 6, we set
P = {Sk−1,1,Sk,1} and P2 = {Sk−3,1,Sk−2,1}. Finally, if j = 4, k = 6, and t ≥ 5, we set
P = {S1,t−1,S1,t} and P2 = {S3,2,S3,2}.

Case 6′a. We treat this case in the same fashion as case 3′a. We begin by
defining a domino tableau

T=

1
3

5 6
2

4

It is the image of the transpose of the tableau in case 3′a under moving
through the cycle containing the domino with label 1. We can now follow the
steps of the proof of case 3′a to construct the desired sequence Σ.

4.5.9. LEMMA. Let (T1,T2) be as in Theorem 4.5.2 and suppose that T2 is special
and S2,2 ∈ Shape(T1). Let P ′ be an extremal position in T1 and suppose that
there exists a tableau T ∈ TD(n) such that Shape(T) = Shape(T1), P(n,T) = P ′,
and nv(T) ≡ nv(T1) (mod 4). Then there is a sequence Σ for Π∗ and a (T′

1,T′
2) ∈

TL
Σ ((T1,T2)) such that P(n,T′

1)= P ′ and T′
2 =T2.

Proof. As in the proof of Proposition 4.5.8, we will assume by induction on n that
Theorem 4.5.2 is true when M = {1, . . . ,n−1}. Let P = P(n,T1). We may assume
that P ′ ̸= P. We first prove the lemma under the additional assumption that both
P and P ′ are boxed.
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We will prove this portion of the lemma along the general lines of the corre-
sponding portion of Lemma 3.2.9. In place of Lemma 3.2.8 used in [6], we will
appeal to Propositions 4.5.4 and 4.5.6. In what follows, let (T1,T2)= (T1,T2)−L.

A majority of the cases employ the same approach, which we call the stan-
dard argument. In each such case we define a set P1 which does not contain
S2,2 and proceed as follows. If P1 is boxed, then by Propositions 4.5.4 and 4.5.6,

there is a tableau T
1
1 whose shape matches that of T1, P(n− 1,T

1
1) = P ′, and

P(n− 2,T
1
2) = P1. By induction on Theorem 4.5.2, there is a sequence Σ1 for

Π∗ \ {αn} and (T
1
1,T

1
2) = TL

Σ1
((T1,T2)) with T

1
2 = T2. Using Lemma 3.2.6, let

(T1
1,T1

2) ∈ TL
Σ1

((T1,T2)) satisfying (T
1
1,T

1
2) = (T1

1,T1
2)− L. Lemma 3.2.7 now al-

lows us to describe P(n,T1
1) and conclude T1

2 = T2. At this point, we can let
Σ2 = (αn−1,αn) or (αn,αn−1). Setting Σ = Σ1Σ2 and (T′

1,T′
2) = TL

Σ2
((T1

1,T2
2)) com-

pletes the argument. If the suggested P1 is not boxed, we let P̃1 be the domino
position sharing its bottom right square with the bottom right square of P1. In
each case where this occurs, P̃1 is boxed and the above argument can be made
with P̃1 in place of P1.

When the standard argument applies, we will simply provide the appropri-
ate P1. Otherwise, we will provide additional details. In the first four cases,
we assume that both P and P ′ are horizontal and set P = {Si, j,Si, j+1} and P ′ =
{Sk,l ,Sk,l+1}. Since P and P ′ are boxed, we have that j and l are both even.

Case A. Here k = i−1. If i > 3, i = 3 and l ≥ 6, or i = 2 and j ≥ 4, let P1 =
{Si−1,l−2,Si−1,l−1} and apply the standard argument. If i = 2 and j = 2, we define
P1 as above, and modify the standard argument by noting that the fact that
the desired tableau T

1
1 exists can be verified simply by inspection. When i = 3

and l = 4 we examine several possibilities. For the remainder of this case, let
r = ρ1(T1) and s = κ1(T1).

(a) Suppose s ≥ 6. Let P1 = {Ss−1,1,Ss,1}, P2 = {Ss−3,1,Ss−2,1} and (T1,T2) =
(T1,T2)− L. We begin as in the standard argument and construct a se-
quence Σ1 for Π∗ \ {αn} and (T1

1,T1
2) ∈ TL

Σ1
((T1,T2)) with P(n−1,T1

1) = P1,
P(n−2,T1

1) = P2, P(n,T1
1) = P, and T1

2 = T2 Let Σ2 = (αn−1,αn) and write
(T2

1,T2
2) = TL

Σ2
(T1

1,T1
2). Following the same procedure, we can find a se-

quence Σ3 for Π∗ \ {αn} and (T3
1,T3

2) ∈ TL
Σ3

((T2
1,T2

2)) with P(n−1,T3
1) = P ′,

P(n−2,T3
1) = P2, P(n,T3

1) = P1 and T3
2 = T2. Letting Σ4 = (αn−1,αn) and

Σ=Σ1Σ2Σ3Σ4, we obtain the desired result.

(b) Suppose r ≥ 7 and let P1 = {S1,r−1,S1,r} and P2 = {S1,r−3,S1,r−2}. We ar-
gue as in (a) and first construct a sequence Σ1 for Π∗ \ {αn} and (T1

1,T1
2) ∈

TL
Σ1

((T1,T2)) satisfying P(n,T1
1)= P, P(n−2,T1

1)= P ′, and P(n−1,T1
1)= P1.

Let Σ2 = (αn,αn−1) and write (T2
1,T2

2) = TL
Σ2

((T1
1,T1

2)). Repeating the argu-
ment, we construct a sequence Σ3 for Π∗ \ {αn} and (T3

1,T3
2) ∈ TL

Σ3
((T2

1,T2
2))

with P(n,T3
1) = P1, P(n− 2,T3

1) = P2, and P(n− 1,T3
1) = P ′. Letting Σ4 =

(αn,αn−1) and Σ=Σ1Σ2Σ3Σ4, we obtain the desired result.
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(c) Let r = 5 and s = 4. Define a tableau as follows:

T= 1
3 4
5 6

2

and let

(T
1
1,T

1
2)=

{
(T,T2) if nv(T1)≡ nv(T) (mod 4)
E((T,T2), ec(1,T;T2),L) otherwise.

Then S(T
1
2)=T2 and furthermore nv((T

1
1,T

1
2))≡ nv((T1,T2)) (mod 4). Work-

ing inductively using Theorem 4.5.2, we can find a sequence Σ1 for Π∗\{αn}
such that (T

1
1,T

1
2) ∈ TL

Σ1
(T1,T2). Let (T1

1,T1
2) ∈ TL

Σ1
((T1,T2)) be such that

(T
1
1,T

1
2) = (T1

1,T1
2)−L. By Lemma 3.2.7, we know that P(7,T1

1) = P(7,T1)
or P ′(7,T1). In the former case let Σ2 = (α6,α7), otherwise we define Σ2 =
(α6,α7), (α4,α5), (α4,C), and write (T2

1,T2
2) = TL

Σ2
((T1

1,T1
2)). If T2

2 is special,
then P(7,T2

1) = P ′ and Σ = Σ1Σ2. If not, note that P(7,T2
1) is boxed and

let (T
2
1,T

2
2) = (T2

1,T2
2)−L. Then by Proposition 4.5.8, there is a sequence

Σ3 for Π∗ \ {α7} and (T
3
1,T

3
2) ∈ TL

Σ3
(T

2
1,T

2
2) with T

3
2 special. Let (T3

1,T3
2) ∈

TL
Σ3

(T2
1,T2

2) be such that (T3
1,T3

2)− L = (T
3
1,T

3
2). Since P(7,T2

1) is boxed,
Lemma 3.2.7-4 implies P(7,T3

1) = P ′ and Σ = Σ1Σ2Σ3 gives the desired re-
sult.

Case B. Here k < i−1. Set r = ρ i−1(T1) and note that r ≥ j+1≥ 3. If i > 3 or r >
3, then set P1 = {Si−1,r−1,Si−1,r}. If i = 3, r = 3, and l ≥ 6, let P1 = {S1,l−2,S1,l−1}.
If i = 3, r = 3, and l = 4, set P1 = {S1,3,S2,3}.

Case C. Here k = i+1. If i ≥ 3, i = 2 and j ≥ 6, or i = 1 and l ≥ 4, let P1 =
{Si, j−2,Si, j−1}. If i = 1 and l = 2, define P1 in the same way and note that by one
of the hypotheses of the lemma the vertical dominos of T1 must all lie in its first
column.

The final cases arise when i = 2 and j = 4. Let r = ρ1(T1) and s = κ1(T1).
When s ≥ 6, we proceed as in part (a) of case (A) only using the inverses of Σ2 and
Σ4 instead. If r ≥ 7 we proceed as in part (b) of case (A), reversing the argument
and again using the inverses of Σ2 and Σ4. When r = 5 and s = 4, we proceed as
in part (c) of case (A), this time using the tableau

T= 1
3 4
5

2
6

and Σ2 = (α7,α6) or Σ2 = (α7,α6), (α4,α5), (α4,C). If a T2
2 constructed in this way is

special, then P(7,T2
1)= P ′ and we are done. Otherwise, we continue as in part (c)
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defining Σ3, this time noting that since S3,2 ̸∈T
3
1 as T

3
2 is special, Lemma 3.2.7-1

forces P(7,T3
1)= P ′.

Case D. Here k > i+1. Let r = ρk−1(T1) and note that r ≥ l +1 ≥ 3. If either
k ̸= 3 or r ̸= 3, let P1 = {Sk−1,r−1,Sk−1,r}. If k = 3, r = 3, and j > 4, then let
P1 = {S1, j−2,S1, j−1}. If k = 3, r = 3, and j = 4, we set P1 = {S1,3,S2,3}.

In the next six cases we assume that P is horizontal and P ′ is vertical, setting
P = {Si j,Si, j+1} and P ′ = {Skl ,Sk+1,l}. Since P and P ′ are boxed, we have that j is
even and k is odd.

Case E. Here k+1= i−1. We set P1 = {Si−2,l−1,Si−1,l−1}.

Case F. Here k+1< i−1. Let r = ρ i−1(T1) and set P1 = {Si−1,r−1,Si−1,r}.

Case G. Here k = i+1 and l < j−1. If i ̸= 2 or j ̸= 4, set P1 = {Si, j−2,Si, j−1}.
When i = 2 and j = 4 we examine several possibilities which parallel the subcases
of case (A). In what follows, let r = ρ1(T1) and s = κ1(T1).

(a) If r ≥ 7, let P∗ = {S1,r−1,S1,r}. We can first use case (A) to move n to P∗ and
then employ the standard argument with P1 = P to move n to P ′.

(b) If s ≥ 6, we let P1 = {Ss−1,1,Ss,1} and P2 = {Ss−3,1,Ss−2,1}. Arguing as
usual, we find a sequence Σ1 for Π∗ \ {αn} and (T1

1,T1
2) ∈ TL

Σ1
(T1,T2) with

P(n−2,T1
1)= P ′, P(n−1,T1

1)= P1, and P(n−2,T1
1)= P ′. Let Σ2 = (αn,αn−1)

and (T2
1,T2

2) = TL
Σ2

((T1
1,T1

2)). Continuing, we can find a sequence Σ3 for
Π∗ \ {αn} and (T3

1,T3
2) ∈ TL

Σ3
(T2

1,T2
2) with P(n−2,T3

1) = P2, P(n−1,T3
1) = P ′,

and P(n,T3
1)= P1. Letting Σ4 = (αn−1,αn) and Σ=Σ1Σ2Σ3Σ4 completes the

proof.

(c) If r = 5 and s = 4, define the tableau T by

T=
1

2 3
4

5
or T=

1
3 4
5

2 6

if l = 1 or l = 2, respectively. In either case, if nv(T1)≡ nv(T) (mod 4) we can
use a version of the standard argument with Σ2 = (αn,αn−1). So suppose
nv(T1) ̸≡ nv(T) (mod 4) and let (T

1
1,T

1
2) = E((T,T2), ec(1,T;T2),L). We first

examine l = 1, noting that S2,3 ̸∈ T
1
1. As usual, we can find a sequence Σ1

for Π∗ \ {αn} such that (T
1
1,T

1
2) ∈ TL

Σ1
(T1,T2). Let (T1

1,T1
2) ∈ TL

Σ1
((T1,T2)) be

such that (T
1
1,T

1
2) = (T1

1,T1
2)−L. By Lemma 3.2.7, we know that P(6,T1

1) =
{S2,3,S2,4}. If P(5,T1

1) is vertical, let the sequence Σ2 = (α6,α5), otherwise
let Σ2 = (α6,α5), (α3,α4), (α′

1,α3) and write (T2
1,T2

2) = TL
Σ2

((T1
1,T1

2)). In the
latter case, T2

2 = T2 and P(6,T2
1) = P ′, as desired. In the former, T2

2 is
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not special and we continue as in part (c) of case (A), again using Lemma
3.2.7-4 to show P(6,T3

1) = P ′. When l = 2, we argue as above but let Σ2 =
(α7,α6), (α4,α5), (α4,C), noting that for one (T2

1,T2
2) ∈ TL

Σ2
((T1

1,T1
2)) we have

T2
2 =T2 and P(7,T2

1)= P ′, as desired.

Case H. Here k > i+1. Let s = ρ i+1(T1). We first consider the case s ≤ j−3.
If i = 2 and j = 4, then l = 1 and k ≥ 5 and we set P1 = {Sk−2,1,Sk−1,1}; otherwise
we set P1 = {Si, j−2,Si, j−1}. If s = j−1, let r = κ j−1(Shape(T1) \ P ′) and set P1 =
{Sr−1, j−1,Sr, j−1}. Finally, suppose s = j−2. Since T1 is special and P is boxed, we
must have φD(Si j) = Z and further r = κ j−2(Shape(T1) \ P ′) is even and greater
or equal to i+2. We can let P1 = {Sr−1, j−2,Sr, j−2}.

Case I. Here k = i−1, implying P∩P ′ = {Si, j+1}. Since both P and P ′ are boxed,
we have that φD(Si j) = Z and that both i and j are even. We consider several
cases. After specifying domino positions P1 and P2, or P ′′ the proof follows the
outline of the corresponding case of Lemma 3.2.9 unless otherwise indicated.

(a) Here i ≥ 4. Let r and s be the lengths of the i − 2 and i − 3 rows of T1
respectively, and assume first that r = j +1, and i ≥ 6 or j ≥ 4. Set P1 =
{Si−2. j+1,Si−1, j+1} and P2 = {Si−2, j,Si−1, j}. If r = j + 1, i = 4, j = 2, and
κ1(T1) = 4, we set P1 = {S3,2,S3,3} and P2 = {S3,1,S4,1}. If s = r > j +1 or
s > r, we define P ′′ as in Lemma 3.2.9.

If r = j +1, i = 4, j = 2, and κ1(T1) ≥ 6, a more elaborate argument is re-
quired. Let P1 = {S2,3,S3,3} and P2 = {S2,2,S3,2}. Using the usual nota-
tion, let T be a tableau of the same shape as T1 with P(n−1,T) = P1 and
P(n−2,T) = P2. If nv(T) ≡ nv(T1) (mod 4), then we can continue as above.
Otherwise let (T

1
1,T

1
2) = E((T,T2), ec(1,T;T2),L). Construct Σ1 and (T1

1,T1
2)

as usual, let Σ2 = (αn−1,αn) and (T2
1,T2

2) = TL
Σ2

((T1
1,T1

2)). The tableau T2
2 is

not special, so we argue as usual in this situation and find Σ3 and (T3
1,T3

2) ∈
TL
Σ3

((T2
1,T2

2)) with T3
2 special and P(n,T3

1)= P ′.

(b) Here j ≥ 4 and the proof is parallel to that of the corresponding case in
Lemma 3.2.9.

(c) Here i = 2 and j = 2. If t = κ1(T1) ≥ 6, let P ′′ = {St−1,1,St,1}. We can use
cases (H) and then (D′) to move n first to P ′′ and then to P ′. If t = 4, then
n = 4. Arguing as usual, we can find a sequence Σ1 such that (T1

1,T1
2) ∈

TL
Σ1

((T1,T2)) where

T1
1 =

1
2
4

3

Applying Σ2 = (α2,D) achieves the desired result. If t = 2, then n = 3 and it
is sufficient to let Σ= (α2,α3).
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Case J. Here k = i +1 and l = j −1 and the proof follows the outline of the
corresponding case of Lemma 3.2.9.

In the next four cases we assume that both P and P ′ are vertical and set
P = {S ji,S j+1,i} and P ′ = {Sl,k,Sl+1,k}. Since P and P ′ are boxed, we know that
both j and l are odd.

Case A′. Here k = i−1. If i ̸= 3 or l ̸= 3, let P1 = {Sl−2,k,Sl−1,k}. If i = 3 and
l = 3, again set P1 = {Sl−2,k,Sl−1,k}, define (T1,T2) = (T1,T2)−L, and let T be
a tableau of the same shape as T1 but with P(n−1,T1) = P ′ and P(n−2,T1) =
P1. If nv(T) ≡ nv(T1) (mod 4), the standard argument applies. If nv(T) ̸≡ nv(T1)
(mod 4), there are two cases.

(a) If κ1(T1) ≥ 6, let (T
1
1,T

1
2) = E((T,T2, ec(1,T;T2),L). Let Σ1 be a sequence

for Π∗ \ {αn} so that (T
1
1,T

1
2) ∈ TL

Σ1
((T1,T2)) and let (T1

1,T1
2) ∈ TL

Σ1
((T1,T2))

satisfy (T1
1,T1

2)− L = (T
1
1,T

1
2). Then P(n,T1

1) = P(n,T1) or P ′(n,T1). Let
Σ2 = (αn,αn−1) and define (T2

1,T2
2) = TL

Σ2
((T1

1,T1
2)). Since T2

2 is not spe-

cial, we argue by induction. Consider (T
2
1,T

2
2) = (T2

1,T2
2)−L and let Σ3 be

a sequence for Π∗ \ {αn} such that (T
3
1,T

3
2) ∈ TL

Σ3
((T

2
1,T

2
2)) is special. Let

(T3
1,T3

2) ∈ TL
Σ3

((T2
1,T2

2)) satisfy (T3
1,T3

2)−L = (T
3
1,T

3
2). Then P(n,T3

1)= P ′ and
T3

2 =T2.

(b) If κ1(T1)= 4, arguing as usual we can find a sequence Σ1 such that (T1
1,T1

2) ∈
TL
Σ1

((T1,T2)) where

T1
1 =

1 2 5

3
4

After applying Σ2 = (α5,α4) we are in case (I) above. Letting Σ3 be the
sequence of operators constructed therein, we define Σ=Σ1Σ2Σ3.

Case B′. Here k < i−1. Let r = κi−1(T1). If i = 3, r = 2, and l = 3, then Σ is
easy to find by inspection. If i = 3, r = 2, and l ≥ 5, let P1 = {Sl−2,1,Sl−1,1}. If i = 4
and r = 3, then κ2(T1)= 3 since T1 is special, k = 1, and we let P1 = {S3,2,S3,3}. In
all other cases, we let P1 = {Sr−1,i−1,Sr,i−1}.

Case C′. Here k = i+1. If either i ≥ 3, i = 2 and j ≥ 5, or i = 1 and l ≥ 3, let
P1 = {S j−2,i,S j−1,i}. If i = 1 and l = 1, then the hypotheses of the lemma allow
us to consider just those tableaux T1 all of whose dominos are vertical; we can
define P1 in the same way. If i = 2 and j = 3, we consider two cases:

(a) If t = κ1(T1) ≥ 6, let P ′′ = {St−1,1,St,1}. Using case (A′) we can first move n
to P ′′ and then to P ′ using case (D′).
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(b) If κ1(T1)= 4 and nv(T1)= 5, we can let P1 = {S1,2,S2,2}. Otherwise, arguing
as usual we can find a sequence Σ1 such that (T1

1,T1
2) ∈ TL

Σ1
((T1,T2)) where

T1
1 =

1
4

2

3 5

Applying Σ2 = (α′
1,α3), (α4,α5) completes the argument.

Case D′. Here k > i+1. Let r = κk−1(T1). If k = 3, r = 2, and j = 3, then let
Σ = (α3,α4). If k = 3, r = 2, and j ≥ 5, set P1 = {S j−2,1,S j−1,1}. If k = 4 and r = 3,
then we also must have κ2(T1) = 3; we set P1 = {S3,2,S3,3}. In all other cases, we
let P1 = {Sr−1,k−1,Sr,k−1}.

In the next six cases we assume that P is vertical and P ′ is horizonal, setting
P = {S j,i,S j+1,i} and P ′ = {Sl,k,Sl,k+1}. Since both are boxed, we have that j is
odd and k is even.

Case E′. Here k+1= i−1. We let P1 = {Sl−2,i−1,Sl−1,i−1}.

Case F′. Here k+1< i−1. We let r = κi−1(T1) and define P1 = {Sr−1,i−1,Sr,i−1}.

Case G′. Here k = i + 1 and l < j − 1. Note first that i is odd. If i ≥ 3 or
i = 1 and l > 2, let P1 = {S j−2,i,S j−1,i}. The case i = 1 and l = 1 is excluded
by the hypotheses of this lemma. If i = 1 and l = 2, note that by a hypothesis
of the lemma, we need only to consider those T1 where S2,2 is contained in a
horizontal domino. Define P1 as above. Arguing as usual we can find a sequence
Σ1 such that (T1

1,T1
2) ∈ TL

Σ1
((T1,T2)) with P(n−2,T1

1) = P1, P(n−1,T1
1) = P ′, and

P(n,T1
1)= P. Applying Σ2 = (αn−1,αn) completes the argument.

Case H′. Here k > i+1. Let t = κi+1(T1). We consider three possibilities.

(a) Here t ≤ j−3. Let P1 = {S j−2,i,S j−1,i}.

(b) Here t = j−1. Let r = ρ j−1(Shape(T1) \ P ′). If j ≥ 5, or if j = 3 and r ≥ 4,
let P1 = {S j−1,r−1,S j−1,r}. Now consider j = 3 and r = 3. If l = 1, let P1 =
{S1,k−2,S1,k−1} if k > 4 and P1 = {S1,3,S2,3} if k = 4. If l = 2 and s = ρ1(T1)≥
7, let P ′′ = {S1,s−1,S1,s}. By using the l = 1 subcase above, we can first move
n to P ′′ and then use case (C) to move it to P ′. If l = 2 and u = κ1(T1)≥ 6, let
P ′′ = {Su−1,1,Su,1}. Using case (A′) we can move n to P ′′ and use the j ≥ 5
subcase above to move it to P ′. Finally, assume l = 2, u = 4, and s = 5. Let

T= 1
2 3
4 5

or T=
1

3 4
5 6

2
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if i = 1 or i = 2, respectively. In either case, if nv(T1) ≡ nv(T) (mod 4) we
can argue along the lines of the standard argument with Σ2 = (αn−1,αn). So
suppose nv(T1) ̸≡ nv(T) (mod 4) and let (T

1
1,T

1
2) = E((T,T2), ec(1,T;T2),L).

As usual, we can find a sequence Σ1 for Π∗ \ {αn} such that (T
1
1,T

1
2) ∈

TL
Σ1

(T1,T2). Let (T1
1,T1

2) ∈ TL
Σ1

((T1,T2)) be such that (T
1
1,T

1
2) = (T1

1,T1
2)−L.

Define Σ2 = (αn−1,αn) and (T2
1,T2

2) = TL
Σ2

((T1
1,T1

2)). Then T2
2 is not special.

Let (T
2
1,T

2
2)= (T2

1,T2
2)−L. Using induction, let Σ3 be a sequence forΠ∗\{αn}

so that (T
3
1,T

3
2) ∈ TL

Σ3
((T

2
1,T

2
2)) is special. If (T3

1,T3
2) ∈ TL

Σ3
((T2

1,T2
2)) satisfies

(T3
1,T3

2)−L = (T
3
1,T

3
2), then P(n,T3

1)= P ′ and T3
2 =T2.

(c) Here t = j−2. Note that φD(S ji) = Y since T1 is special and P ′ is boxed.
Because P ′ is horizontal, r = ρ j−2(Shape(T1) \ P ′) ≥ i+2 and we set P1 =
{S j−2,r−1,S j−2,r}.

Cases I′. Here k = i−1. This case parallels case (I), albeit with fewer special
subcases. We omit the arguments.

Cases J′. Here k = i+1 and l = j−1 and note that since P and P ′ are boxed, j ≥
3. When i ≥ 3, the proof parallels that of case (J). When i = 1, let r = ρl−1(T1). If
r = 3, we let P ′′ = {Sl−1,3,Sl,3}. If r > 3, then r ≥ 5 and we let P ′′ = {Sl−1,r−1,Sl−1,r}.
In both cases P ′′ is boxed and we argue as in the final subcases of part (a) of case
(I).

This exhausts all of the possible cases, concluding the proof of the lemma
when both P and P ′ are boxed.

We now assume that P ′ is boxed and P is unboxed. We will closely follow the
proof of Lemma 3.2.9. First assume that P is horizontal, setting P = {Si j,Si, j+1}.
Under these hypotheses, we have φD(Si j) = W or Y , but since T1 is special,
it follows that in fact φD(Si j) = W and i ≥ 2. Furthermore, ρ i−1(T1) = j + 1
for otherwise Si, j+2 would form an empty hole. Set (T1,T2) = (T1,T2)−L. By

Lemma 4.5.8 or by inspection, there is a sequence Σ1 for Π∗\{αn} and a (T
1
1,T

1
2) ∈

TL
Σ1

((T1,T2)) such that T
1
2 is special. Let (T1

1,T1
2) ∈ TL

Σ1
((T1,T2)) be such that

(T
1
1,T

1
2)= (T1

1,T1
2)−L. Then Shape(T

1
1)= (Shape(T1)\{Si−1, j+1})∪ {Si j}, and from

Lemma 3.2.7-1, we can conclude that

P(n,T1
1)= P ′(n,T1)= {Si−1, j+1,Si, j+1}.

This domino position is boxed, and the therefore the cases of our lemma that we
have already proved apply. Hence there is a sequence Σ2 for Π∗ and a (T′

1,T′
2) ∈

TL
Σ2

((T1
1,T1

2)) such that P(n,T′
1) = P ′. We set Σ = Σ1Σ2. When P = {Si j,Si+1, j} is

vertical instead, we can conclude that φD(Si j) = W and κ j−1(T1) = i +1, and a
transposed version of the argument above applies.

Finally, consider the case when P ′ is unboxed. First assume that P ′ is hor-
izontal, setting P ′ = {Si j,Si, j+1}. Arguing as above, we find φD(Si j) = W and
ρ i−1(T1) = j+1. Set P ′′ = {Si−1, j+1,Si, j+1}. It is boxed and an extremal position
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in T1. Using Propositions 4.5.6 and 4.5.4 if necessary, we can appeal to the cases
of the lemma that we have already verified, letting Σ1 be a sequence for Π∗ sat-
isfying (T1

1,T1
2) ∈ TL

Σ1
((T1,T2)) with T1

2 = T2 and P(n,T1
1) = P ′′. Now let (T

1
1,T

1
2) =

(T1
1,T1

2)−L. By Theorem 2.2.3, there is an open cycle c ∈OC(T
1
2) with Sb(c)= Si j

and S f (c)= Si−1, j+1. Again using Propositions 4.5.6 and 4.5.4 if necessary we can

find a tableau T such that Shape(T) = Shape(T
1
1), P(n−1,T) = {Si−1, j,Si j}, and

nv(T) ≡ nv(T
1
1) (mod 4). Then {n−1} constitutes an extended cycle in T relative

to T
1
2. Set

(T
2
1,T

2
2)=E((T,T

1
2), {n−1},L),

so that Shape(T
2
1) = (Shape(T) \ {Si j})∪ {Si−1, j+1}. Since S(T

2
2) = T

1
2, we can use

Theorem 4.5.2 inductively to find a sequence Σ2 for Π∗ \{αn} such that (T
2
1,T

2
2) ∈

TL
Σ2

((T
1
1,T

1
2)). Let (T′

1,T′
2) ∈ TL

Σ2
((T1

1,T1
2)) be such that (T′

1,T′
2)−L = (T

2
1,T

2
2). Then

P(n,T′
1)= P ′(n,T1

1)= P ′. By setting Σ=Σ1Σ2, we complete the proof of the lemma
in this case. When P ′ is vertical, a transposed argument applies. This exhausts
all of the possible cases, bringing the proof of the lemma to a merciful end.

Section 6

4.6.1. DEFINITION. We extend Definition 3.4.1 (of the left generalized τ-invariant),
this time relative to type D, to TD(n,n) in the obvious way, replacing the notion
of sequence in [6] by that of Definition 4.5.1; we define the right generalized
τ-invariant similarly. We denote this relation by ∼GTLD rather than ∼GTL for
clarity.

Then Remark 3.4.2 carries over to type D with the same proof, as do 3.4.3–
3.4.7, replacing the pair {α,β} wherever it occurs by {α, X }, where α is one of
the simple roots α′

1,α2, or α4 and X = C or D. One also replaces the condi-
tions 1 ∈ ec(2,T1;T2), c(2,T1) ∈ OC∗(T1) by 3 ∈ ec((4,T1;T2), c(4,T1) ∈ OC∗(T1),
respectively. Thus for any tableau pairs (T1,T2), (T′

1,T′
2) in T ′(n,n) we have

(T1,T2) ∼GTLD (T′
1,T′

2) whenever S(T1) = S(T2). Corresponding to Lemma 3.4.8
we have

4.6.2. LEMMA. Let (T1,T2) ∈ TD(M1, M2) with M1 = {1, . . . ,n}. Let 1 < l < n
and let T̄1 be the tableau obtained from T1 by removing the dominos labelled
l + 1, . . . ,n. Let P̄ be an extremal position in T̄1. Assume that there exists a
tableau T having the same shape as T̄1, the l-domino in position P̄, and the same
nv value as nv(T̄1 modulo 4. Then there is a sequence Σ for {α′

1,α2, . . . ,αl} and
a (T3,T2) ∈ TL

Σ ((T1,T2)) such that P(l,T3) = P̄ and, for l + 1 ≤ r ≤ n,P(r,T3) =
P(r,T1).

Proof. This is proved as in 3.4.8, using Lemma 4.5.9 instead of Theorem 3.2.2.

Then 3.4.9–3.4.14 carry over to type D with the same proofs. Our main result
extends Theorem 3.4.17 to type D.
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4.6.3. THEOREM. Let (T1,T2), (T′
1,T′

2) both lie in T ′
D(M1, M2) or both lie in

TD"(M1, M2),where M1 = M2 = {1, . . . ,n}. Then (T1,T2)∼GTLD (T′
1,T′

2) if and only
if S(T1)=S(T2).

Proof. This is proved in the same way as Theorem 3.4.17, using the analogues of
Lemmas 3.4.15 and 3.4.16 for type D, except that (as noted above) Lemma 3.4.8
no longer holds for all tableau shapes. A further complication is that specialness
of a tableau shape is no longer preserved under transposition, so that the trans-
poses of certain cases must be considered separately; fortunately the hypothesis
of specialness is not used in many cases of the proof of Theorem 3.4.17. For any
tableau shape for which the conclusion of Lemma 3.4.8 fails in type D (that is,
a tableau shape obtained from one of the bad ones listed after Proposition 4.5.6
by adding a single domino), we therefore compute the generalized τ-invariant ex-
plicitly and check directly that it does not coincide for the tableaux T1 and T′

1. In
all cases the computation is easy.

Section 7

We define the relations ∼JLD and ∼JRD on W ′,S ′(n,n),S ′′(n,n) and TD(n,n) in
exactly the same way for type D as ∼JR ,∼JL were defined for types B and C in
Definition 3.5.1; note that ∼JR ,∼JRD are the left and not the right cell relations
of Joseph, as erroneously stated in that definition.

4.7.1. THEOREM. Let (T1,T2), (T′
1,T′

2) ∈TD(n,n). Then (T1,T2)∼JRD (T′
1,T′

2) if
and only if S(T1)=S(T′

1).

Proof. This follows at once from Theorem 4.5.2 (and its easy converse).

Now 3.5.4–3.5.6 carry over immediately to type D with the obvious changes in
notation; note that the condition w1 ∼JL w2 in Proposition 3.5.4 (1) should read
w1 ∼JR w2; similarly, the condition w1 ∼GTR w2 in (2) should read w1 ∼GTL (w2).
Likewise the condition w1 ∼GTR w2 in Corollary 3.5.6 (1) should read w1 ∼GTL
w2. In the statements of these results for type D, we assume throughout that
either w1,w2 ∈ W ′ or w1,w2 ∈ W". Then Definition 3.5.7 carries over word for
word to type D and we have Iλ(w1) ∼GTD Iλ(w2) if and only if w1 ∼GTL w2. We
have

4.7.2. THEOREM. Suppose all the simple factors of ∆λ are of type D. Let
I1, I2 ∈Primλ(U(g)). Then I1 ∼GTD I2 if and only if I1 = I2.

We conclude with the definition of the operator TL
α′

1C of Definition 4.4.10 on

the set T S
D (n) of tableaux of special shape relative to type D; we make the analo-

gous definition for the other operators defined in Section 4. If C3 or C4 is a subset
of a tableau T of special shape, then the cycle c(4,T1) is necessarily closed; move
through this cycle and replace the subset C1 (resp. C2) in the resulting tableau by
B1

1 (resp. B2
1) to obtain the single tableau Tα′

1C(T). Otherwise C1 or C2 is a subset
of T; replace it by B1 or B2 to obtain a tableau T′. if c(4,T′) is open, take Tα′

1C(T)
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to be the single tableau T′. Finally, if c(4,T) is closed, Tα′
1C(T) has two values, the

first one being T′ and the second one obtained from it by moving through c(4,T′).
Then the classification theorem reads

4.7.3. THEOREM. Suppose that g is of type Dn and λ ∈ h is integral, regular,
and anti-dominant. Then the map cl from Primλ(U(g)) to T S

D (n) sending Iλ(w)
to S(L(δ(w))) is a bijection; it is also the unique map from its domain to its range
preserving τ-invariants and commuting with the operators Tαβ and the operators
of Definition 4.4.3.
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