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I now tie the Jordan decomposition to algebraic groups. Given
such a group G and g ∈ G, we have seen that right translation
ρ(g) by g on k[G] (acting via the recipe (ρ(g)f )(x) = f (xg)) is
locally finite, so we have a unique Jordan decomposition
ρ(g) = ρ(g)sρ(g)u
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Theorem 2.4.8, p. 34: Jordan decomposition in G
Given g ∈ G there are unique gs,gu ∈ G with
ρ(gs) = ρ(g)s, ρ(gu) = ρ(g)u,g = gsgu = gugs. If ϕ : G → G′ is a
homomorphism, then ϕ(gs) = ϕ(g)s, ϕ(gu) = ϕ(g)u. If G = GLn(k),
then g = gsgu is the Jordan decomposition of G defined
previously.
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Proof.
Since ρ(g) is an algebra automorphism of k[G], it commutes with
addition and multiplication in k[G], whence by a property of the
Jordan decomposition proved last time so do ρ(g)s, ρ(g)u. Given
a k-algebra homomorphism of k[G] into k , corresponding to an
element of G, its compositions with ρ(g)sρ(g)u thus also
correspond to commuting elements gs,gu of G, respectively,
with g = gsgu. Uniqueness follows since ρ is faithful on G. Given a
homomorphism ϕ it factors as a surjective homomorphism onto
its image followed by an inclusion of this image into G′. Again
previous properties of the Jordan decomposition yield the
second assertion. The third one follows similarly.
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We say that g ∈ G is semisimple if g = gs and similarly that g ∈ G
is unipotent if g = gu. It follows at once that g ∈ G is semisimple if
and only if ϕ(g) is semisimple as a matrix for any homomorphism
ϕ : G → GL(n,k); similarly for unipotent elements. We also
deduce a significant constraint on closed (or equivalently
algebraic) subgroups of GL(n,k): any such subgroup must
contain the semisimple and unipotent parts of all of its elements.
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Proposition 2.4.12, p. 36
If G is a subgroup of GLn consisting of unipotent matrices, then
there is x ∈ GLn with xGx−1 ⊂ Un, the subgroup of upper
triangular unipotent matrices.

We call any such subgroup unipotent; by above results unipotent
algebraic groups are exactly those consisting of unipotent
elements, or conjugate to a subgroup of Un.
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We know that G acts linearly on V = kn. If there is a proper
subspace W of V stabilized by G, then the result at once by
induction on dimV . If there is no such subspace, then G acts
irreducibly on V . Then it is well known that linear combinations of
matrices in G fill out all of Mn, the algebra of n × n matrices over
k. Any matrix in G has trace n, whence the trace of (1 − g)h is 0
for all g,h ∈ G, whence also for g ∈ G,h ∈ Mn. Since the trace
form on Mn sending any ordered pair(x , y) of matrices to the
trace of their product xy is nondegenerate, so that no nonzero
matrix is orthogonal to every other under this form, this forces
G = 1 and the result is trivial.
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Next I show that unipotent groups act on affine varieties with
closed orbits.

Proposition 2.4.14, p. 37
If G is unipotent and X is an affine G-space, then all orbits of G
on X are closed.
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Proof.

Let O be a G-orbit. Replacing X by the closure O we may
assume that O is dense in X and then we know that O is also
open in X . Letting Y be the complement of O in X , we have that
G acts locally finitely on the ideal of functions in k[X ] vanishing
on Y , whence if Y is nonempty there is a nonzero function f
vanishing on Y and fixed by G, which must be constant on O
and thus on X . This is a contradiction, forcing O = X , as
desired.
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Skipping the rest of Chapter 2 (pp. 37-41) we proceed to
Chapter 3, treating commutative algebraic groups.

Theorem 3.1.1, p. 42
Let G be a commutative algebraic group. The sets Gs,Gu of
semisimple and unipotent elements of G are closed subgroups
and G is isomorphic to their direct product. If G is connected so
are Gx and Gu.
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Proof.
We may assume G is a closed subgroup of some GLn, Since the
product of two commuting semisimple (resp. unipotent)
elements of G is again semisimple (resp. unipotent), we see that
Gs,Gu are subgroups with product G. Since a commuting family
of semisimple matrices is conjugate to a subset of the set Dn of
diagonal matrices, we can arrange things so that G lies in the
the subgroup Tn of upper triangular matrices and Gs is its
intersection with the subgroup Dn of diagonal matrices, whence
Gs is closed; likewise Gu = G ∩ Un is closed. The uniqueness of the
Jordan decomposition shows that the product map
π : Gs × Gu → G is an isomorphism of abstract groups, while the
map sending g to gs picks out the diagonal entries of g, so is a
morphism. Hence π is an isomorphism of algebraic groups, as
claimed. Finally, if G is connected then so are its images Gs,Gu
under the projection maps.
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I now specialize to (algebraic) groups of dimension one.

Proposition 3.1.3, p. 42
Any group G of dimension one is commutative, and either equal
to Gs or Gu. If G = Gu and k has characteristic p > 0, then all
elements of G have order dividing p.
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Proof.

Fix g ∈ G and let ϕ : G → G send x to g−1xg. The closure ϕG is
then an irreducible closed subset of G; since G has dimension
one it must be a singleton or all of G. If it is all of G then the
image ϕG, being open in G, must contain all but finitely many
elements of G. Viewing G as a closed subgroup of some GLn,
this forces the set of characteristic polynomials det(T .1 − x) to be
a finite set as x runs over G. The connectedness of G then implies
that every x ∈ G has characteristic polynomial (T − 1)n and G is
unipotent, forcing G ⊂ Un after replacing G by a conjugate.
Letting G1 = [G,G], the commutator subgroup of G, and
G2 = [G1,G1], etc., we must have Gn = 1 and yet G1 is either 1 or
all of G, forcing G1 = 1 and G is commutative. The product
G = Gx × Gu forces G = Gs or G = Gu. Finally, if G = Gu and
p > 0, then the set Gpk

of pk -th powers of elements of G is a
subgroup, which must be trivial if pk > n, forcing Gp = 1, as
desired.

Lecture 10-11: Jordan decomposition continued and commutative groupsOctober 11, 2023 13 / 1



I conclude with the definitions of torus (different from the one a
topologist or geometer would use) and vector group.

Definitions 3.2.1, p. 43 and 3.4.1, p. 51
An (algebraic) torus is a group isomorphic to Dn ∼= Gn

m for some
n; recall that Gm = k∗ is the multiplicative group of nonzero
elements of k. Likewise a vector group is one isomorphic to
kn ∼= Gn

a, where Ga = k, considered as an additive group.
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