Lecture 10-11: Jordan decomposition continued and commutative groups

October 11, 2023

I now tie the Jordan decomposition to algebraic groups. Given such a group G and $g \in G$, we have seen that right translation $\rho(g)$ by g on $\mathbf{k}[G]$ (acting via the recipe $(\rho(g) f)(x)=f(x g)$) is locally finite, so we have a unique Jordan decomposition $\rho(g)=\rho(g)_{s} \rho(g)_{u}$

Theorem 2.4.8, p. 34: Jordan decomposition in G

Given $g \in G$ there are unique $g_{s}, g_{u} \in G$ with $\rho\left(g_{s}\right)=\rho(g)_{s}, \rho\left(g_{u}\right)=\rho(g)_{u}, g=g_{s} g_{u}=g_{u} g_{s}$. If $\phi: G \rightarrow G^{\prime}$ is a homomorphism, then $\phi\left(g_{s}\right)=\phi(g)_{s}, \phi\left(g_{u}\right)=\phi(g)_{u}$. If $G=G L_{n}(\mathbf{k})$, then $g=g_{s} g_{u}$ is the Jordan decomposition of G defined previously.

Proof.

Since $\rho(g)$ is an algebra automorphism of $\mathbf{k}[G]$, it commutes with addition and multiplication in $\mathbf{k}[G]$, whence by a property of the Jordan decomposition proved last time so do $\rho(g)_{s}, \rho(g)_{u}$. Given a \mathbf{k}-algebra homomorphism of $\mathbf{k}[G]$ into k, corresponding to an element of G, its compositions with $\rho(g)_{s} \rho(g)_{u}$ thus also correspond to commuting elements g_{s}, g_{u} of G, respectively, with $g=g_{s} g_{u}$. Uniqueness follows since ρ is faithful on G. Given a homomorphism ϕ it factors as a surjective homomorphism onto its image followed by an inclusion of this image into \mathcal{G}^{\prime}. Again previous properties of the Jordan decomposition yield the second assertion. The third one follows similarly.

We say that $g \in G$ is semisimple if $g=g_{s}$ and similarly that $g \in G$ is unipotent if $g=g u$. It follows at once that $g \in G$ is semisimple if and only if $\phi(g)$ is semisimple as a matrix for any homomorphism $\phi: G \rightarrow G L(n, \mathbf{k})$; similarly for unipotent elements. We also deduce a significant constraint on closed (or equivalently algebraic) subgroups of $G L(n, \mathbf{k})$: any such subgroup mus \dagger contain the semisimple and unipotent parts of all of its elements.

Proposition 2.4.12, p. 36

If G is a subgroup of $G L_{n}$ consisting of unipotent matrices, then there is $x \in G L_{n}$ with $x G x^{-1} \subset U_{n}$, the subgroup of upper triangular unipotent matrices.

We call any such subgroup unipotent; by above results unipotent algebraic groups are exactly those consisting of unipotent elements, or conjugate to a subgroup of U_{n}.

We know that G acts linearly on $V=\mathbf{k}^{n}$. If there is a proper subspace W of V stabilized by G, then the result at once by induction on $\operatorname{dim} V$. If there is no such subspace, then G acts irreducibly on V. Then it is well known that linear combinations of matrices in G fill out all of M_{n}, the algebra of $n \times n$ matrices over k. Any matrix in G has trace n, whence the trace of $(1-g) h$ is 0 for all $g, h \in G$, whence also for $g \in G, h \in M_{n}$. Since the trace form on M_{n} sending any ordered pair (x, y) of matrices to the trace of their product $x y$ is nondegenerate, so that no nonzero matrix is orthogonal to every other under this form, this forces $G=1$ and the result is trivial.

Next I show that unipotent groups act on affine varieties with closed orbits.
Proposition 2.4.14, p. 37
If G is unipotent and X is an affine G-space, then all orbits of G on X are closed.

Proof.

Let O be a G-orbit. Replacing X by the closure \bar{O} we may assume that O is dense in X and then we know that O is also open in X. Letting Y be the complement of O in X, we have that G acts locally finitely on the ideal of functions in $\mathbf{k}[X]$ vanishing on Y, whence if Y is nonempty there is a nonzero function f vanishing on Y and fixed by G, which must be constant on O and thus on X. This is a contradiction, forcing $O=X$, as desired.

Skipping the rest of Chapter 2 (pp. 37-41) we proceed to Chapter 3 , treating commutative algebraic groups.

Theorem 3.1.1, p. 42

Let G be a commutative algebraic group. The sets G_{s}, G_{u} of semisimple and unipotent elements of G are closed subgroups and G is isomorphic to their direct product. If G is connected so are G_{x} and G_{u}.

Proof.

We may assume G is a closed subgroup of some $G L_{n}$, Since the product of two commuting semisimple (resp. unipotent) elements of G is again semisimple (resp. unipotent), we see that G_{s}, G_{u} are subgroups with product G. Since a commuting family of semisimple matrices is conjugate to a subset of the set D_{n} of diagonal matrices, we can arrange things so that G lies in the the subgroup T_{n} of upper triangular matrices and G_{s} is its intersection with the subgroup D_{n} of diagonal matrices, whence G_{s} is closed; likewise $G_{u}=G \cap U_{n}$ is closed. The uniqueness of the Jordan decomposition shows that the product map $\pi: G_{s} \times G_{u} \rightarrow G$ is an isomorphism of abstract groups, while the map sending g to g_{s} picks out the diagonal entries of g, so is a morphism. Hence π is an isomorphism of algebraic groups, as claimed. Finally, if G is connected then so are its images G_{s}, G_{u} under the projection maps.

I now specialize to (algebraic) groups of dimension one.

Proposition 3.1.3, p. 42

Any group G of dimension one is commutative, and either equal to G_{s} or G_{u}. If $G=G_{u}$ and \mathbf{k} has characteristic $p>0$, then all elements of G have order dividing p.

Proof.

Fix $g \in G$ and let $\phi: G \rightarrow G$ send x to $g^{-1} x g$. The closure $\overline{\phi G}$ is then an irreducible closed subset of G; since G has dimension one it must be a singleton or all of G. If it is all of G then the image ϕG, being open in G, must contain all but finitely many elements of G. Viewing G as a closed subgroup of some $G L_{n}$, this forces the set of characteristic polynomials $\operatorname{det}(T .1-x)$ to be a finite set as x runs over G. The connectedness of G then implies that every $x \in G$ has characteristic polynomial $(T-1)^{n}$ and G is unipotent, forcing $G \subset U_{n}$ after replacing G by a conjugate. Letting $G_{1}=[G, G]$, the commutator subgroup of G, and $G_{2}=\left[G_{1}, G_{1}\right]$, etc., we must have $G_{n}=1$ and yet G_{1} is either 1 or all of G, forcing $G_{l}=1$ and G is commutative. The product $G=G_{x} \times G_{u}$ forces $G=G_{s}$ or $G=G_{u}$. Finally, if $G=G_{u}$ and $p>0$, then the set $G^{p^{k}}$ of p^{k}-th powers of elements of G is a subgroup, which must be trivial if $p^{k}>n$, forcing $G^{p}=1$, as desired.

I conclude with the definitions of torus (different from the one a topologist or geometer would use) and vector group.

Definitions 3.2.1, p. 43 and 3.4.1, p. 51

An (algebraic) torus is a group isomorphic to $D_{n} \cong G_{m}^{n}$ for some n; recall that $G_{m}=\mathbf{k}^{*}$ is the multiplicative group of nonzero elements of \mathbf{k}. Likewise a vector group is one isomorphic to $\mathbf{k}^{n} \cong G_{a}^{n}$, where $G_{a}=\mathbf{k}$, considered as an additive group.

