Lecture 10-13: Wrapping up commutative groups

October 13, 2023

I will wrap up Chapter 3, giving an account of diagonalizable groups and showing that a connected commutative group consisting of semisimple (resp. unipotent) elements is a torus (resp. a vector group).

Definition 3.2.1, p. 43

A diagonalizable group is one isomorphic to a closed subgroup of a torus.

Before discussing diagonalizable groups in general, I will study tori in more detail.

Example

Let $x_{1}=\chi_{1}(x), \ldots, x_{n}=\chi_{n}(x)$ be the diagonal entries of $x \in D_{n}$. Recall that a character of a group G is a homomorphism $G \rightarrow G_{m}$; note that the set $X^{*}(G)$ of characters of G is a group under multiplication. Recall Dedekind's theorem, which asserts that the characters of G are linearly independent as \mathbf{k}-valued functions on G; this is easily proved by considering a dependence relation with as few terms as possible and then using the definition of character to produce such a relation with fewer terms, a contradiction. For $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}$ we have a character of D_{n} sending the element x above to $x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}$. Since these functions span all of $\mathbf{k}\left[D_{n}\right]$ over \mathbf{k}, it follows by Dedekind that $X^{*}\left(D_{n}\right) \cong \mathbb{Z}^{n}$.

Example

By contrast, a vector group G (isomorphic to G_{a}^{n} for some n) has no nontrivial characters at all. The homomorphisms from G into G_{a}, called additive functions (p. 49), are the same as they are in linear algebra, that is, they are just \mathbf{k}-vector space maps from $G \cong \mathbf{k}^{n}$ to \mathbf{k}. Monomials in these maps (but not just the maps themselves) furnish a \mathbf{k}-basis of $\mathbf{k}[G]$.

Theorem 3.2.3, p. 43

The following are equivalent:

- G is diagonalizable.
- $X^{*}(G)$ is a finitely generated abelian group whose elements span $\mathbf{k}[G]$.
- Any rational representation of G is a direct sum of one-dimensional representations.

Proof.

If G is a closed subgroup of D_{n} then $\mathbf{k}[G]$ is a quotient of $\mathbf{k}\left[D_{n}\right]$; since any character of D_{n} restricts to a character of G, we see that the nontrivial restrictions to G of the characters of D_{n} span $\mathbf{k}[G]$ and that they form a basis of $X^{*}(G)$. Hence $X^{*}(G)$ is a finitely generated abelian group. Now suppose that $X=X^{*}(G)$ is finitely generated and abelian and spans $\mathbf{k}[G]$ and let $\phi: G \rightarrow G L(V)$ be a rational representation. Then we must have that each $\phi(x)$ is a finite linear combination $\sum_{\chi \in X} A_{\chi} \chi(x)$, where the A_{χ} are suitable linear maps on V, since the $\chi(x)$ span $\mathbf{k}[G]$. Finally, if the third property holds, then so too does the first one, embedding G in D_{n} and looking at the action of G on $V=\mathbf{k}^{n}$.

Proof.

The relation $\phi(x y)=\phi(x) \phi(y)$, together with Dedekind's theorem, implies that $A_{\chi} A_{\psi}=A_{\chi}=A_{\psi}$ if $\chi=\psi$ and $A_{\chi} A_{\psi}=0$ otherwise; also $\sum_{\chi} A_{\chi}=1$. Letting V_{χ} be the image of A_{χ} it follows that V is the direct sum of the V_{χ} and that every $x \in G$ acts on V_{χ} by the scalar $\chi(x)$, as claimed.

Now let G be a diagonalizable group with character group $X^{*}(G)$. As a finitely generated abelian group $A=X^{*}(G)$ is isomorphic to the direct sum $\mathbb{Z}^{n} \otimes M$ for some finite abelian group M. Define the group algebra $\mathbf{k}[A]$ to be the set of finite formal linear combinations $\sum_{a \in A} k_{a} e(a)$ with coefficients $k_{a} \in \mathbf{k}$, multiplying by the distributive law together with the rule $e(a) e(b)=e(a+b)$ for $a, b \in A$. One easily checks that $\mathbf{k}[A]$ has the structure of a linear algebraic group with coordinate ring isomorphic to $\mathbf{k}\left[T_{1}, T_{1}^{-1} \ldots, T_{n}, T_{n}^{-1}\right] \otimes \mathbf{k}[M]$, defining $\mathbf{k}[M]$ analogously to $\mathbf{k}[A]$.

It follows that $\mathbf{k}[G]$, since it is spanned over \mathbf{k} by $X^{*}(G)$, is isomorphic to the coordinate ring of $\mathbf{k}[A]$, whence G is isomorphic to $\mathbf{k}[A]$, or to the direct product $D_{n} \times M$. We deduce that

Corollary 3.2.7, p. 45

Any diagonalizable group G is the direct product of a torus and a finite abelian group, with the order of the latter prime to the characteristic of \mathbf{k}, if this is positive. G is a torus if and only if it is connected, or if and only if $X^{*}(G)$ is free abelian.

This is immediate, noting that \mathbf{k} has no pth roots of 1 other than 1 if it is has prime characteristic p.

Next I give a result showing how diagonalizable groups fit inside larger groups.

Proposition 3.2.8, p. 45: rigidity of diagonalizable groups

Let G, H be diagonalizable groups and let V be a connected variety. Assume we are given a morphism of varieties $\phi: V \times G \rightarrow H$ such that for any $v \in V$ the map $v \rightarrow \phi(v, x)$ defines a homomorphism of algebraic groups from G to H. Then $\phi(v, x)$ is constant in v.

Indeed, for any $\psi \in X^{*}(H)$ we have $\psi(\phi(v, x))=\sum_{\chi \in X^{*}(G)} f_{\chi, \psi}(V) \chi(x)$ with $f_{\chi, \psi} \in \mathbf{k}[V]$. Dedekind implies that $f_{\chi, \psi}(v)=1$ for one χ and 0 for the others, whence $f_{\chi, \psi}^{2}=f_{\chi, \psi}$. Then the connectedness of V forces for each fixed ψ that $f_{\chi, \psi}=1$ for one χ and 0 for the others; the result follows.

Corollary 3.2.9, p. 46

Let H be a diagonalizable subgroup of a group G. Then the centralizer $Z_{G}(H)$ of H in G has finite index in its normalizer $N_{G}(H)$ and $Z_{G}(H), N_{G}(H)$ have the same identity component.

It is immediate that $Z_{G}(H), N_{G}(H)$ are closed subgroups with $Z_{G}(H)$ normal in $N_{G}(H)$. Then the result follows from the proposition applied to the identity component $V=N_{G}(H)^{0}$ of $N_{G}(H)$ and ϕ the morphism from $V \times H$ to H sending (x, y) to $x y x^{-1}$.

It follows from above results that a commutative group consisting of semisimple elements is diagonalizable and thus the direct product of a torus and a finite abelian group. What about a commutative unipotent group, assuming further that its elements have order dividing p if the characteristic p of \mathbf{k} is prime?

Theorem 3.4.7, p. 54

Any such group G is a vector group G_{a}^{n} if the characteristic p of \mathbf{k} is 0 and the direct product of a vector group and a product of copies of \mathbb{Z} / p if p is positive. In particular, G is a vector group if and only if it is connected.

I refer to pp. 49-54 of the text for the proof. The argument is elementary but quite elaborate, requiring a cohomological calculation with polynomials and proving along the way that $\mathbf{k}[G]$ is generated as a \mathbf{k}-algebra by the additive functions on G.

As an immediate corollary we get

Theorem 3.4.9, p. 55

Up to isomorphism, the only connected groups of dimension one are G_{a} and G_{m}.

We already know that all such groups are commutative and are either unipotent or consist entirely of semisimple elements. Then the result follows at once from the previous one.

