Lecture 10-27: Homogeneous spaces

October 27, 2023

Given a closed subgroup H of an algebraic group G, our final goal for the chapter is to give the structure of a quasi-projective variety to the quotient G / H.

We begin by noting that every irreducible component of a homogeneous space X for G is a homogeneous space for its identity component G^{0} and X is the disjoint union of its irreducible components (Lemma 5.3.1, p. 86). This follows at once by the same argument showing that G is the disjoint union of its irreducible components. Next we have

Theorem 5.3.2, p. 86

Let G be an algebraic group and $\Phi: X \rightarrow Y$ a G-equivariant morphism of G-homogeneous spaces. Set $r=\operatorname{dim} X-\operatorname{dim} Y$.

- For any variety Z the morphism (ϕ, id) : $X \times Z \rightarrow Y \times Z$ is open.
- If Y^{\prime} is an irreducible closed subvariety of Y and X^{\prime} an irreducible component of $\phi^{-1} Y^{\prime}$ then $\operatorname{dim} X^{\prime}=\operatorname{dim} Y^{\prime}+r$. In particular, if $y \in Y$ than all irreducible components of $\phi^{-1} y$ have dimension r.
- ϕ is an isomorphism if and only if it is bijective and for some $x \in X$ the tangent map $d \phi_{X}: T_{X} X \rightarrow T_{\phi x} Y$ is bijective.

Proof.

Using the previous result we reduce to the case that G is connected and X, Y are irreducible. Then ϕ is surjective and thus dominant. Let $U \subset X$ be an open subset with the generic properties proved earlier for dominant morphisms. Then all translates $g . U$ have the same properties; since these cover X we get the first two assertions. If ϕ is bijective we know that $\mathbf{k}(X)$ is a purely inseparable extension of $\mathbf{k}(Y)$. If $d \phi_{X}$ is surjective for some x we see from Theorem 4.3.7 that this extension is also separable. Hence $\mathbf{k}(X)=\mathbf{k}(Y)$ and ϕ is birational, and thus an isomorphism on an open subset. Covering X by translates of this set we see that ϕ is an isomorphism.

The simplest example of a bijective homomorphism of algebraic groups which fails to be an isomorphism of algebraic groups occurs (as mentioned before) with $G=G_{m}$ or $G_{a}, \phi: G \rightarrow G, \phi(x)=x^{p}$. Here the differential $d \phi$ is the zero map at every point.

Corollary 5.3.3, p. 87

If $G \rightarrow G^{\prime}$ is a surjective homomorphism of algebraic groups, then $\operatorname{dim} G=\operatorname{dim} G^{\prime}+\operatorname{dim} \operatorname{ker} \phi$ and ϕ is an isomorphism if and only if both ϕ and the tangent map $d \phi_{e}$ are bijective.

This is clear.

Now let G be a connected algebraic group and let σ be an automorphism of G. Set $G_{\sigma}=\{x \in G: \sigma x=x\}$; this fixed subgroup is a closed subgroup of G. Denote by χ the morphism sending $x \in G$ to $(\sigma x) x^{-1}$. The differential $d \sigma$ is an automorphism of the Lie algebra \mathfrak{g} of G. Setting $\mathfrak{g}_{\sigma}=\{X \in \mathfrak{g}: d \sigma(X)=X\}$, we get $d \chi\left(L\left(G_{\sigma}\right)=0\right.$, whence $L\left(G_{\sigma}\right) \subset \mathfrak{g}_{\sigma}=\operatorname{ker} d \chi$, since $d \chi=d \sigma-1$ by Lemma 4.4.13. In general, equality does not hold; the simplest example occurs in Exercise 5.4.9 (1) on p. 90 of the text. It is easy to check that in fact $L\left(G_{\sigma}\right)=\mathfrak{g}_{\sigma}$ if and only if χ is separable when viewed as a morphism from G to $\overline{\chi G}$ (Lemma 5.4.2, p. 88).

Theorem 5.4.4, p. 89

Let σ be a semisimple automorphism of G (so that σ^{*} acts semisimply on $\mathbf{k}[G]$). With notation as above, the image χG is closed and χ is separable when viewed as a morphism from G to $\chi \mathfrak{G}$. We also have $L\left(G_{\sigma}\right)=\mathfrak{g}_{\sigma}$.

Proof.

We may assume that G is a closed subgroup of $G L_{n}$ and that $\sigma x=s x s^{-1}$ for some semisimple element of $G L_{n}$, which we may take to be a diagonal matrix. If $G=G L_{n}$ then the last assertion is easy. If \mathcal{G} is arbitrary, then regard σ, which is conjugation by s, as an automorphism of $G L_{n}$, and extend χ similarly. Let $X \in T_{e} \chi G$. Since $T_{e} \overline{\chi G} \subset T_{e} \overline{\chi\left(G L_{n}\right)}$ and since we already know the result for $G L_{n}$ there is $Y \in \mathfrak{g l}_{n}$ with $X=d \sigma(Y)-Y$. Semisimplicity of s implies that $d \sigma$ is a semisimple automorphism of $\mathfrak{g l}_{n}$, stabilizing the subspace \mathfrak{g}. Then this subspace has a d σ-stable complement. Hence we may take $Y \in \mathfrak{g}$ and $d \chi$ is surjective, when χ is separable by Theorem 4.3.6; also the second assertion holds.

Proof.

(continued) It remains to show that $\chi \mathrm{G}$ is closed. Set
$m(T)=\prod_{i=1}^{r}\left(T-a_{i}\right)$, where the a_{i} are the distinct eigenvalues of s. Let $S \subset G L_{n}$ consist of the matrices x such that x normalizes $G, m(x)=0$, and the characteristic polynomial of the restriction of $\operatorname{Ad} x$ to \mathfrak{g} equals that of $d \sigma$. Then S is closed and contains s. Since m has distinct roots, all elements of S are semisimple. Now for $x \in S$ put $G_{x}=\left\{g \in G: g \times g^{-1}=x\right\}$ and $\mathfrak{g}_{x}=\{X \in \mathfrak{g}: \operatorname{Ad}(x) X=X\}$. Then we have shown that $\operatorname{dim} G_{x}=\operatorname{dim} \mathfrak{g}_{x}$. But the latter dimension equals the multiplicity of the eigenvalue 1 of the restriction of $\operatorname{Ad}(x)$ to \mathfrak{g}, which equals $\operatorname{dim} \mathfrak{g}_{\sigma}$. Hence $\operatorname{dim} G_{x}=\operatorname{dim} G_{\sigma}$ for all $x \in G$. Now G acts on S by inner automorphisms and by Theorem 5.3.2 all orbits have dimension $\operatorname{dim} G=\operatorname{dim} G_{\sigma}$. But then by Lemma 2.3.3 all orbits are closed; since $\chi \mathcal{G}$ is a translate of an orbit, the theorem is proved. It also follows that the conjugacy class $C=\left\{x s x^{-1}: x \in G\right\}$ is closed and if $Z=G^{s}$ is the centralizer of s in G, then
$\mathfrak{g}=(A d(s)-1) \mathfrak{g} \oplus L(Z)$ (Corollary 5.4.5, p. 89).

In general, conjugacy classes in G are not closed; for example, the unique nontrivial conjugacy class of a unipotent element in $S L_{2}$ has the identity element in its closure; in fact, all conjugacy classes of unipotent elements in an a reductive algebraic group (one admitting no nontrivial unipotent normal subgroup) have the identity element in their closures.

Now we are ready to tackle the quotient group construction. Let H be a closed subgroup of the linear algebraic group G.

Lemma 5.5.1, p. 91

There is a finite dimensional subspace V of $\mathbf{k}[G]$ and subspace W of V such that

- V is stable under right translations by elements of G.
- $H=\{x \in G: \rho(x) W=W\}, \mathfrak{h}=\{X \in \mathfrak{g}: X . W \subset W\}$.

Proof.

Let $I \subset \mathbf{k}[G]$ be the ideal of functions vanishing on H and let V be a finite-dimensional $\rho(G)$-stable subspace of $\mathbf{k}[G]$ containing a set f_{1}, \ldots, f_{r} of generators of I. Set $W=V \cap I$. Then I claim that W has the required properties. Indeed, if $x \in H$ then $\rho(x) W=W$, by an easy calculation. Conversely, if $\rho(x) W=W$, then $\rho(x) I \subset I$ and $x \in H$ by Lemma 2.3.8. The proof of the corresponding Lie algebra property is similar, using Lemma 4.4.7. Note that if ϕ is the rational representation of G in V defined by ρ, then we have $d \phi(X) . f=X . f$ for $f \in V, X \in \mathfrak{g}$.

Now let V be an arbitrary finite-dimensional vector space and W a subspace of dimension d. The d th exterior power $\wedge^{d} V$ of V contains the one-dimensional subspace $L=\wedge^{d} W$. Let ϕ be the canonical representation of $G L(V)$ on $\wedge^{d} V$; the actions of $G L(V)$ and its Lie algebra on this space were described last week.

Lemma 5.5.2, p. 92

For $x \in G L(V)$ we have $x . W=W$ if and only if $(\phi x)(L)=L$, while for $X \in \mathfrak{g l}(V)$ we have $X . W \subset W$ if and only if $(d \phi X)(L) \subset L$.

The only if assertions are clear. Choose a basis $\left(v_{1}, \ldots, v_{n}\right)$ of V such that $\left(v_{1}, \ldots, v_{d}\right)$ is one of W. Given $x \in G L(V)$, we may choose the v_{i} such that $\left(v_{\ell+1}, \ldots, v_{\ell+d}\right)$ is a basis of x.W. If $x . L=L$ this is clearly impossible unless $\ell=0$. Similarly, if $X \in \mathfrak{g l}(V)$, and $e=v_{1} \wedge \ldots \wedge v_{d}$ then $(d \phi X)(e)=\sum_{i=1}^{d} v_{1} \wedge \ldots \wedge X v_{i} \wedge \ldots \wedge v_{d}$. Writing $X v_{i}=\sum a_{i j} v_{j}$ it follows that $(d \phi X) e=\sum_{i=1}^{d} \sum_{j} a_{i j} v_{1} \wedge \ldots \wedge v_{j} \wedge \ldots \wedge v_{d}$. Then if $a_{i j} \neq 0$ for some $i \leq d, j>d$, then the subspace L is not mapped into itself by $(d \phi X)$, proving the second assertion.

The lemmas now yield the following result, with G and H as before.

Theorem 5.5.3, p. 92

There is a rational representation $\phi: G \rightarrow G L(V)$ and a nonzero $v \in V$ with $H=\{x \in \mathcal{G}:(\phi x) v \in \mathbf{k} v\}, \mathfrak{h}=\{X \in \mathfrak{g}:(d \phi X) v \in \mathbf{k} v\}$.

As a corollary we get

Corollary 5.5.4, p. 93

There is a quasi-projective homogeneous space X for G together with a point $x \in X$ such that the isotropy group of x in G is H, the morphisms $\psi: g \mapsto g . x$ of G to X defines a separable morphism $G^{0} \rightarrow \psi G^{0}$, and the fibers of ψ are the cosets $g H$ of H.
. Let V, v be as in the theorem and let x be the point in projective space $\mathcal{P} V$ defined by the line $\mathbf{k} v$. Denote by $\pi: V \backslash\{0\} \rightarrow \mathcal{P} V$ the map sending a vector to the line passing through it. Now G acts in an obvious way on $\mathcal{P} V$. Denoting by X the G-orbit of x, the assertions follow from the theorem and Theorem 4.3.7 (ii).

Now we finally construct the quotient space G / H. Of course its points are the cosets $g H$; let $\pi: G \rightarrow G / H$ be the canonical map. Define $U \subset G / H$ to be open if and only if $\pi^{-1} U$ is open in G. This defines a topology on G / H such that π is an open map. Define a sheaf \mathcal{O} of \mathbf{k}-valued functions on G / H by declaring that if $U \subset G / H$ is open then $\mathcal{O}(U)$ is the ring of functions f on U such that $f \circ \pi$ is regular on $\pi^{-1} U$. It is easy to check that this indeed defines a sheaf of functions. Now, defining X as in the previous corollary, one can show that the map $\phi: G / H \rightarrow X$ sending $g H$ to $g . x$ is an isomorphism. The details are tricky, requiring Zariski's main theorem. I refer to p. 94 of the text. As a corollary one gets that G / H is a quasi-projective variety of dimension $\operatorname{dim} G-\operatorname{dim} H$ and if G is connected then the canonical morphism $\pi: G \rightarrow G / H$ is separable (Corollary $5.5 .6, \mathrm{p} .94$). In general, G / H does not have the structure of an affine variety, but it does have this structure if H is normal in G and then G / H is a linear algebraic group (Proposition 5.5.10, p. 96).

More generally, let H be a closed subgroup of the linear algebraic group G and X an irreducible H-variety on which H acts on the right. Assume that the morphism $\pi: G \rightarrow G / H$ has local sections in the sense that G / H is covered by open sets U such that U admits a morphism $\sigma: U \rightarrow G$ with $\pi \circ \sigma=i_{U}$. Then a quotient $(G \times X) / H$ exists; it is the fibered product $G \times{ }^{H} X$ constructed by starting with $G \times X$ and then identifying any point (g, x) with ($g h, h^{-1} . x$) (Lemma 5.5.8, p. 95).

