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Theorem 6.2.7, p. 102
A closed subgroup of G is parabolic if and only if it contains
a Borel subgroup.
A Borel subgroup is parabolic.
Any two Borel subgroups are conjugate.
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Proof.
We may assume that G is connected. Let B be a Borel subgroup
and P a parabolic subgroup. Applying Borel’s fixed point
theorem to B and the complete variety G/P we see that P
contains a conjugate of B, which is also a Borel subgroup. To
finish the proof of the first assertion it suffices to prove the second
one. We may assume that G is non-solvable. Then it has a
proper parabolic subgroup, which after conjugation we may
assume contains B. Then B is Borel in P; by induction on
dimension we may assume B is parabolic in P. Hence B is
parabolic in G, as desired. Finally, if B,B′ are two Borel subgroups,
then both are parabolic and each is conjugate to a subgroup of
the other, whence they have the same dimension and both are
conjugate.
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An easy argument then yields

Corollary 6.2.8, p. 103
Let ϕ : G → G′ be a surjective homomorphism of algebraic
groups. Let P be a parabolic subgroup (resp. a Borel subgroup)
of G. Then ϕP is a subgroup of G′ of the same type.

We also get

Corollary 6.2.9, p. 103

If G is connected with center C(G) then C(G)0 ⊂ C(B) ⊂ C(G).

C(G)0 is closed, connected, and commutative, so lies in a Borel
subgroup. By the conjugacy of Borel subgroups, it lies in all Borel
subgroups, whence the first inclusion. If g ∈ C(B) the morphism
x 7→ gxg−1x−1 induces a morphism G/B → G, which must be
constant; the second assertion follows.
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Then we have

Corollary 6.2.10, p. 103

If B is nilpotent (as an abstract group) then G0 = B.

A connected nilpotent group contains a nontrivial closed
connected subgroup in its center (the subgroup generated by
commutators of maximal length). Hence C(B) is nontrivial and
central in G; moding out by C(B) and arguing by induction on
dimension, the result follows.
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We now study connected solvable groups, denoting such a
group by G throughout. We will show that G always contains a
torus and we will relate its structure to that of the torus. We begin
with a famous result.
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Theorem 6.3.1, p. 104: Lie-Kolchin Theorem
If G is a closed subgroup of GLn then there is x ∈ GLn with
xGx−1 ⊂ Tn, the group of upper triangular matrices.

Using induction on n it is enough to prove that the elements of G
have a nonzero common eigenvector. This follows from Borel’s
fixed-point theorem 6.2.6, applied to G acting on Pn.
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A more elementary argument is also available. By induction on
dimG we may assume that there is a common eigenvector for
the elements of the commutator group (G,G), which is closed
and connected. If χ is a character of (G,G) set
Vχ = {v ∈ V : g.v = χ(g)v ,g ∈ (G,G)}. Then G permutes the
distinct nonzero spaces Vχ; since G is connected it must in fact
stabilize each Vχ. Now it suffices to prove the result when V = Vχ

for some χ. The elements of (G,G) act by scalar multiplications;
since these multiplications have determinant one, (G,G) must
be finite. Since (G,G) is also connected it must be trivial, forcing
G to be abelian. But then we know that G is conjugate to a
subgroup of diagonal matrices and the existence of a common
eigenvector follows at once.
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As an interesting historical aside, Kolchin originally proved this
result for differential Galois groups. These are groups attached to
the solution spaces of linear homogeneous differential equations
with function coefficients coming from a given field of functions,
just as ordinary Galois groups are attached to the splitting fields
of polynomials with coefficients from a given field of numbers.
Differential Galois groups were historically the first groups to be
called algebraic.
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Corollary 6.3.2, p. 105
Assume further that G ⊂ GLn is nilpotent.

The sets Gs,Gu of semisimple rep. unipotent elements are
closed and connected subgroups, with Gs a central torus in
G.
The product map Gs × Gu → G is an isomorphism of
algebraic groups.
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Proof.
We first show that Gs is a central torus. Nilpotence of G forces all
n-fold iterated commutators in G to be trivial, for some n. If s ∈ G
is semisimple, the map χ defined in 5.4.1 from conjugation c(s)
by s has χ(x) = (s, x) = sxs−1x−1, the commutator of s and x , for
all x ∈ G, whence χnG = e. By Lemma 4.4.13 we get that
Ad(s)− 1 is a linear map on g which is both semisimple and
nilpotent, so that it is 0. It follows that Gs is closed under
multiplication and is indeed a central torus. Now we know that
V = kn decomposes as a direct sum of one-dimensional
subspaces, on each of which Gs acts by scalars. Lie-Kolchin
then enables us to put the restriction of G to each subspace in
triangular form. The result of the proof proceeds as in the
commutative case.
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Corollary 6.3.3, p. 105
Let G be solvable and connected.

The commutator subgroup (G,G) is closed, connected,
unipotent, and normal.
The set Gu of nilpotent elements is a closed connected
nilpotent, and normal subgroup of G; the quotient group
G/Gu is a torus.
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Proof.
First of all, (G,G) is closed and connected. We may assume that
G is a closed subgroup of Tn. Then (G,G) is clearly unipotent.
Since Gu = G ∩ Un,Un the upper triangular unipotent matrices,
we see that Gu is a closed normal subgroup, nilpotent since Un is.
We have an injective map from G/Gu into the torus Dn ∼= Tn/Un.
Thus G/Gu is diagonalizable; since it is connected it is a torus. It
only remains to show that Gu is connected. Its identity
component G0

u is normal in G; passing to G/G0
u, we are reduced

to showing that Gu is finite then it is trivial. Now any finite normal
subgroup N of a connected linear algebraic group H is central,
since for fixed n ∈ N the morphism from G to N sending g to
g−1ng has connected and finite image. Hence Gu = 1 and G is
nilpotent. The previous result then shows that Gu is connected,
as desired.
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Before we prove our next main result we need a lemma.

Lemma 6.3.4, p. 105
Assume that G is not a torus. Then there exists a closed normal
subgroup N of G that is isomorphic to Ga and lies in the center of
Gu.

Let H a nontrivial closed connected subgroup of G lying in the
center of Gu; we have seen that such subgroups exist. If the
characteristic p of k is nonzero we may further assume that
Hp = e, by replacing H by a suitable power Hpe

of itself. Then H is
isomoprhic to a vector group Gm

a ; if m = 1, we are done.
Otherwise let A ⊂ k[H] be the space of additive functions on H.
The torus T = G/Gu acts on H by conjugation; there is a
representation of T on k[H] stabilizing A. We can then find f ∈ A
which is a simultaneous eigenvector for the T -action. Then the
identity component (ker f )0 of the kernel of f has the same
properties as H, but has lesser dimension. The lemma then follows
by induction.
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A maximal torus in G is a subtorus with the same dimension as
S = G/Gu (p. 106). This turns out to be the same as a subtorus of
maximal dimension, as follows from the next result; for now just
note that dim S is indeed the maximal possible dimension of a
subtorus.

Theorem 6.3.5, p. 106
Let s ∈ G be semisimple. Then s lies in a maximal torus; in
particular, maximal tori exist.
The centralizer ZG(s) of a semisimple element s ∈ G is
connected.
Any two maximal tori of G are conjugate.
If T is a maximal torus, then the product map π : T × Gu → G
is an isomorphism of varieties.

We will prove this next time.
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