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Lemma 7.2.3, p. 117
Assume that G is connected semisimple of rank one (so that
R(G) = e).

dimU = 1, ZG(T ) = T , and U ∩ nUn−1 = e.
There is a unique weight α of T in g such that g is the direct
sum of t = L(T ) and weight spaces gα, g−α, with
L(U) = gα, L(nUn−1) = g−α.
The product map (u,b) 7→ unb is an isomorphism of varieties
U × B → UnB = G − B.
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Proof.
We know that dimU = 1, dimB = 2 and that U ∩ nUn−1 is finite and
unipotent. Since this group is normalized by T it lies in the
centralizer of T , which is connected and lies in B. As dimB = 2 we
have ZG(T ) = T or ZG(T ) = B. The second case would force B to
be nilpotent and G to be solvable, which is not the case, so
ZG(T ) = T ,U ∩ nUn−1 = e, proving part (i). From the classification
of one-dimensional groups we know that U ∼= Ga; let u : Ga → U
be an isomorphism. There is a character α of T such that
tu(a)t−1 = u(α(t)a) for a ∈ k, t ∈ T and α is nontrivial since
ZG(T ) = T . If X ∈ L(U) is a nonzero element in the image of the
differential du, then for t ∈ T we have Ad(t)X = α(t)X ,
Ad(n)X ∈ L(nUn−1), and finally Ad(t)Ad(n)X = α(t)−1Ad(n)X .
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Proof.
(continued) Now we know that dimB ≤ 3; but it follows from the
above that t⊕ kX ⊕ kAd(n)X is a three-dimensional subspace of
g, so is all of g, proving part (ii). Finally, we show that (v ,b) 7→ vb is
an isomorphism of the variety nUn−1 × B onto G − nB, which is
equivalent to part (iii). Using part (ii), we check that the tangent
map at (e,e) of this map is bijective; the result follows.

In particular, we deduce, as mentioned above, that the only
multiples of a root α that are roots are ±α, since the subgroup Gα

for any c ∈ k∗ is the same subgroup as Gα, but has only ±α as
the roots occurring in it.
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We now classify connected semisimple groups of rank one.

Theorem 7.2.4, p. 118
The only connected semisimple groups of rank one up to
isomorphism are SL2(k) and PSL2(k).

We have done most of the steps needed to prove this; we refer
to pp. 118-20 of the text for the remaining technical details.
Note that if k has characteristic 2, then SL2(k) and PSL2(k) are
isomorphic as abstract groups but not as linear algebraic groups
(their coordinate rings are different).
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We now study reduced (crystallographic) root systems in
Euclidean space; recall that these are finite subsets R of V = Rn

for some n such that (RS1) R is finite and does not contain 0; (RS2)
if α ∈ R, then the only multiples of α in R are ±α; and (RS3) if α, β
in R, then 2(β, α)/(α, α) ∈ Z and sα(β) = β − ((2β, α)/(α, α))α ∈ R.
Here (·, ·) denotes the usual dot product in Rn; recall that sα(β) is
just the reflection of β by α, an orthogonal transformation.
Denote by W the finite subgroup of On(R) generated by the
reflections sα; this is the Weyl group. The integer n is called the
rank of the root system. Two root systems R,R′, living in Euclidean
spaces V ,V ′ are regarded as isomorphic if there is a linear
isomorphism ϕ from V to V ′ mapping R onto R′ such that
2(α,β)
(α,α) = 2(ϕα,ϕβ)

(ϕα,ϕα) for all α, β ∈ R; it is not required that ϕ preserve
dot products. The dual of a root system R, obtained by replacing
each α ∈ R by α̌ = 2α/(α, α), is easily seen to be a root system.
Similarly, given any root datum D = (X ,R, X̌ , Ř), the quadruple
(X̌ , Ř,X ,R) is again a root datum, called the dual of D (p. 124).
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For α, β ∈ R, α ̸= ±β, we first note that 2(β,α)
(α,α)

2(α,β)
(β,β) = 4(α,β)2

(α,α)(β,β) ∈ N;
by the Cauchy-Schwarz inequality this last fraction can take only
the values 0, 1, 2, or 3. Hence the angle between any two
nonproportional roots is necessarily a multiple of π/4 or π/6; it is
this property that makes R crystallographic. Now given any
nonproportional α, β ∈ Rn, the corresponding reflections sα, sβ
generate a dihedral subgroup of On(R), which is finite if and only
if the angle between α, β is a rational multiple of π. For α, β lying
in a root system R the only finite dihedral groups that can arise in
this way have 4, 6, 8, or 12 elements, corresponding to the
symmetry groups of a pair of orthogonal lines, an equilateral
triangle, a square, or a regular hexagon. (Recall that equilateral
triangles, squares, and hexagons are the only regular polygons
that can tile the plane without overlap.)
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In each of these cases, replace V by the span V ′ of α and β and
R by the intersection R ∩ V ′ and this span. It is easy to check that
R′ is a root system in V ′. The vectors α, β may then be taken to lie
along axes of symmetry for two orthogonal lines, an equilateral
triangle, a square, or a regular hexagon centered at the origin in
V ′; see p. 154. Replacing α, β by vectors γ, δ also lying along
axes of symmetry, but separated as widely as possible, we can
arrange that the roots in R′ are two points on each of the two
lines with all four points equidistant from the origin in the two-line
case; of the vertices and 2√

3
times the midpoints of the sides in

the triangle case, the vertices and midpoints of the sides in the
square cases, or the vertices and twice the midpoints of the sides
in the hexagon case, taking the triangle, square, and hexagon
to be centered at the origin. (The reason for the rescaling of the
midpoints in the triangle and hexagon cases is to ensure that the
ratios 2(α,β)

(α,α) , and not just the ratios 4(α,β)2

(α,α)(β,β) , are integers.)
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More precisely, these roots can be taken to be ±γ,±δ (in the
two-lines case), ±γ,±δ,±(γ + δ) (in the triangle case),
±γ,±δ ± (γ + δ),±(γ + 2δ) (square case), or
±γ,±δ,±(γ + δ)± (γ + 2δ),±(γ + 3δ),±(2γ + 3δ) (hexagon case).
In explicit coordinates, we can take γ = (0, 1), δ = (1, 0) in the
two-line case, γ = (−1/2,

√
3/2), δ = (1, 0) in the triangle case,

γ = (−1, 1), δ = (1, 0) in the square case, and
γ = (−

√
2, 1), δ = (1, 0) in the hexagon case. To get cleaner

formulas for the coordinates of the roots in the triangle and
hexagon cases, it is convenient to replace the ambient vector
space R2 here by the hyperplane H in R3 consisting of all points
(x , y , z) such that x + y + z = 0. Then the formulas for γ, δ become
(1,−1, 0), (0, 1,−1) in the triangle case and (−2, 1, 1), (1,−1, 0) in
the hexagon case.
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To summarize, the root systems of rank 2 up to isomorphism
consist of ±(1, 0),±(0, 1) or of ±(1,−1, 0),±(0, 1,−1),±(1, 0,−1) or
of ±(−1, 1),±(1, 0),±(0, 1),±(1, 1) or of
±(−2, 1, 1), (1,−1, 0), (−1, 0, 1), (0,−1, 1), (1,−2, 1), (1, 1,−2). We
say that these four root systems are of type A1 × A1, type A2,
type B2 (or type C2), and type G2, respectively. Clearly any two
nonproportional roots in any root system R lie in a subsystem R′ of
one of these four types.
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Notice that in all four cases, the roots labelled γ, δ are such that
every root is an integer combination of γ and δ with either all
nonpositive or all nonnegative coefficients. We now show that
this always happens. Given an arbitrary root system R ⊂ V = Rn,
let U be the complement in V of the union of hyperplanes Hα

orthogonal to each root α; an easy exercise shows that U is
nonempty. The connected components of U are called Weyl
chambers. Given x lying in a Weyl chamber, we declare a root
α ∈ R to be positive (with respect to x) if (x , α) > 0. Then for any
root β exactly one of ±β is positive and if β, γ are positive and
β + γ is a root, then it is a positive root. The set R+ of positive roots
is called a positive subsystem. Any Weyl chamber C is
determined by the positive subsystem of roots corresponding as
above to any element of C; the Weyl group W permutes the
Weyl chambers. See p. 125 in the text.
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Now let C,D be two Weyl chambers and choose x ∈ C, y ∈ D; let
R+ be the positive subsystem corresponding to C. If D ̸= C, then
there is α ∈ R+ with (y , α) < 0; replacing y by y ′ = sαy = y + cα
with c > 0, we see that (y ′, x) > (y , x). Thus if we choose z in the
W -orbit of y in Rn with (z, x) maximal, we must have z ∈ C, so
that any two Weyl chambers, or any two positive subsystems, are
conjugate under W . Next, given a positive subsystem R+ and
the corresponding x ∈ V lying some Weyl chamber, call α
indecomposable if it is not the sum of two roots in R+. Then we
claim that every positive root is a sum of indecomposable
positive roots.
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Otherwise, if some positive root is not such a sum, then there is
such a root β with (β, x) as small as possible. Then β cannot itself
be indecomposable, so write β = β1 + β2 with the βi positive. But
then the βi have smaller dot product with x than β does, forcing
the βi to be sums of indecomposable roots, whence β is as well,
a contradiction. We now rename the indecomposable positive
roots relative to R+, calling them simple (see p. 139). Then (as
promised above) every root is an integer combination of simple
roots, with all coefficients nonnegative or all coefficients
nonpositive; moreover, there is a bijection between positive
subsystems and their corresponding sets of simple roots (called
simple subsystems), with any two positive subsystems or simple
subsystems being conjugate under W .
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We conclude by relating positive subsystems to Borel subgroups
of linear algebraic groups. We need a simple lemma.

Lemma 7.3.6, p. 122
Let G be a connected semisimple group of rank one, B a Borel
subgroup, T a maximal torus of B, and α the unique root of T in B.
Let χ be a character of T , regarded as a character of B via the
isomorphism B/Bu ∼= T . Assume that f ∈ k[G] is a nonconstant
regular function such that for g ∈ G,b ∈ B we have
f (gb) = χ(b)f (g). Then ⟨χ, α̌⟩ > 0.
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Proof.
We know that G ∼= SL2(k) or PSL2(k); since the coordinate ring of
the latter is contained in that of the former, we may assume that
G = SL2(k). Then we can take T to be the diagonal matrices in G
and B the upper triangular ones. For x ∈ Gm one checks directly

that α
(

x 0
0 x−1

)
= x2, α̌(x) =

(
x 0
0 x−1

)
. Set ⟨χ, α̌⟩ = a. By the

proof of Theorem 7.2.4, we must have for z ̸= 0 that

f
(

1 0
z 1

)
= zag(z−1) for some polynomial g. Regularity at z = 0

then forces a ≥ 0; nonconstancy forces a > 0, as desired.
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Now let G be an arbitrary connected algebraic group with Borel
subgroup B and maximal torus T ⊂ B. Let α be a root of T in G.
Then Gα ∩ B is a Borel subgroup of Gα, whence
B′ = (Gα ∩ B)/(Ru(Gα) ∩ B) is a Borel subgroup of the reductive
group G′ = G + α/Ru(Gα), containing the image T ′ of T . Let ±α′

be the characters of T ′ corresponding to ±α. It is easy to check
that L(B′) is the direct sum of L(T ′) and a one-dimensional weight
space, whose weight is either α′ or −α′. Let R+(B) be the set of
roots obtained in this way as α runs through set R(G, T ) of roots of
T in G.

Proposition 7.4.6, p. 126
With notation as above, R+(B) is a positive subsystem.
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Proof.
Choose a rational representation Φ : G → GL(A) and a nonzero
vector a ∈ A such that B is the stabilizer of the line ka. Then there
is a character χ of T , extended to B as above, with
(ϕb).a = χ(b)a. Let ℓ be a linear function on A and put
F(g) = ℓ((ϕg)a) for g ∈ G. Then F ∈ k[G] and if b ∈ B we have
F(gb) = χ(b)F(g). Let α be a root and restrict F to Gα. Since the
unipotent radical Ru(Gα) fixes a, the function F is the pullback of
a function F ′ ∈ k[G′], so that F ′ has the property of the hypothesis
of Proposition 7.3.6. Then we get ⟨χ, α̌⟩ > 0. If equality holds, then
the restriction of F to Gα would be constant for all ℓ and Gα

would stabilize a, which is impossible. Hence Ř+(B) is a positive
system for Ř, whence R+(B) is one for R, as claimed.
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In particular, if α, β are two roots of T in B such that α+ β is a root,
then it is a root of T in B. Also note that since any two positive
subsystems are conjugate under the Weyl group W , any positive
subsystem takes the form R+(B) for a unique Borel subgroup B
containing the fixed maximal torus T .
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