
Lecture 12-1: The Isomorphism Theorem

December 1, 2023

Lecture 12-1: The Isomorphism Theorem December 1, 2023 1 / 1



For the remainder of the course we will return to the text,
sketching in very broad outline the main ideas in the proofs that
the root datum of a reductive group determines the group up to
isomorphism, and that every abstract root datum is the root
datum of a reductive group.
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Given the root datum D = (X ,R, X̌ , Ř) of a reductive group G
relative to a maximal torus T , our first goal is to show that D
determines G up to isomorphism. To this end we fix a realization
(uα)α∈R of the root system R in G (recall the definition on p. 133).
Given α, β ∈ R we have we have the structure constants
cα,β;i,j ∈ k defined for positive integers i, j by the equation
uα(x)uβ(y)uα(x)−1uβ(x)−1 =

∏
i,j:iα+jβ∈R uiα+jβ(cα,β;i,jx iy j) for all

x , y ∈ k (p. 156); here the order of the factors is prescribed by a
total order of R fixed in advance. (In particular, if iα+ jβ is never
a root for any i, j > 0, then all uα(x) commute with all uβ(y).) If
(c′

α,β;i,j) is the set of structure constants arising from another
realization (u′

α)α∈R then there are cα ∈ k∗ such that cαc−α = 1
and c′

αβ;i,j = c−1
α c−1

β ciα+jβcα,β;i,j ; we call the structure constants
(cα,β;i,j) and (c′

α,β;i,j) equivalent in this situation. For convenience
we set cα,β;0,1 = cα,β,1,0 = 1 for all roots α, β.
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The proof that D determines G is a long and intricate
calculation. We will refer to the text for most of it, just stating the
main results used along the way. Let α, β ∈ R be arbitrary. As in
Lemma 8.1.4 (1), set nα = uα(1)u−α(−1)uα(1); this element
normalizes T and represents the reflection sα on R. For β ∈ R, x ∈ k
define u′

β(x) = nαusα.β(x)n
−1
α ; then (u′

β) is another realization of R.
Hence there is dα,β ∈ k∗ such that nαuβ(x)n−1

α = usα.β(dα,βx). Now
if α, β are independent roots then a simple calculation using root
systems of rank 2 shows that the set if integers i such that β + iα is
a root is the intersection of an interval [−c,b] with Z, for some
c,b ≥ 0. We call the succession of roots β − cα, . . . , β + bα the
α-string through β (p. 156). Then we have

Lecture 12-1: The Isomorphism Theorem December 1, 2023 4 / 1



Lemma 9.2.2, p. 156

dα,β =
∑c

i=max(0,c−b)(−1)ic−α,β;i,1cα,β−iα;i+b−c,1;

d−α,β = (−1)⟨β,α̌⟩dα,β,dα,βd−α,−β = dα,βdα,sα.β =
(−1)⟨β,α̌⟩,dα,βdα,−β = 1,dα,α = −1;
nαnβn−1

α = (sα.β)̌(dα,β)nsα.β .

Lecture 12-1: The Isomorphism Theorem December 1, 2023 5 / 1



The proof of this result is given on pp. 157-8; it uses a rational
representation of SL2(k). Next we have

Lemma 9.2.3, p. 158
Let αβ, γ ∈ R and assume that β, γ are linearly independent.

csα.β,sα.γ;i,j − d−i
α,βd−j

α,γdα,iβ+jγcβ,γ;i,j is uniquely determined by
the cδ,ϵ;i′,j′ and the dα,δ, where δ, ϵ are positive linear
combinations of β, γ and i ′ + j ′ < i + j. In particular
csα.β,sα.γ;1.1 = d−1

α,βd−1
α,γdα,β+γcβ,γ;1,1.

cγ,β;i,j = (−1)icβ,γ;i,j is uniquely determined by the cδ,ϵ;i′,j′ of
the first part. In particular, cγ,β;1,1 = −cβ,γ;1,1.

This falls out of the calculation used to prove the preceding
lemma.
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Given linearly independent γ, δ ∈ R let R′ be the intersection of
the root system R and the two-dimensional subspace V ′ of the
ambient vector space V spanned by γ and δ. Then R′ is of rank
two, so must be of type A1 × A1,B2 or G2. If R′ is of type A1 × A1
then no combination iγ + jδ lies in R for any i, j > 0, whence there
are no structure constants cγ,δ;i,j . Otherwise let α, β be a choice
of simple roots for R′. The constants cγ,δ;i,j are then determined
by
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Proposition 9.2.5, p. 158
We can normalize the the realization (uγ) such that all
structure constants lie in Z (or in Z/p, if the characteristic p
of k is positive). We have cα,β;i,j = 1 for i, j > 0 and iα+ jβ ∈ R′

and dα,γ ,dβ,γ = ±1 for all positive roots γ ∈ R′ (relative to the
choice α, β of simple roots).
if R′ is of type G2 then cβ,3α+β;1,1 = 1
The above properties uniquely determine all structure
constants attached to pairs of roots in R′; moreover, we
have cα,β;i,j = cw .α,w .β;i,j for any w in the Weyl group W of R.

This is a lengthy but elementary calculation in each type, using
the previous two lemmas (see pp. 159-161).
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Next we address the elements nα = uα(1)u−α(−1)uα(1) (for α ∈ R)
defined in Lemma 8.1.4; we have previously observed that this
element represents the reflection sα in W . Setting tα = α̌(−1), we
have n2

α = tα. Denote by m(α, β) the order of the product sαsβ of
reflections; recall that m(α, β) = 2, 3, 4. or 6. A fairly elementary
calculation shows that

Proposition 9.3.2, p. 162
If α and β are simple roots relative to a choice of positive roots,
then the braid relation nαnβnα . . . = nβnαnβ . . . holds, where there
are m(α, β) factors on each side.

This is proved on pp. 162-3.
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Now we are ready to give a presentation of G as an abstract
group, given its root datum (X ,R, X̌ , Ř), realization (uα)α∈R , and
structure constants cα,β;i,j ; this is carried out on pp. 164-5. Fix a
choice ∆ of simple roots for R. We have seen that the structure
constants may be normalized as in Lemma 9.2.5 and are then
uniquely determined up to equivalence. It then turns out that
cα,β;1,1 = ±(c + 1), where c is the largest nonnegative integer
such that α− cβ ∈ R (Proposition 9.5.3, p. 170). We begin by
realizing a maximal torus of G as T = hom(X ,k∗). For χ ∈ X we
define a homomorphism χ : T → k∗ via χ(t) = t(χ). For λ ∈ X̌
define the homomorphism λ : k∗ → T via λ(x)(χ) = x⟨χ,λ⟩ for
x ∈ k, χ ∈ X . The Weyl group W (computable from the root
datum, together with its actions on X and X̌ ) acts on T by
w .t(χ) = t(w−1.χ). Now for α ∈ R, x ∈ k we have a generator
uα(x), corresponding to uα; we impose the relations
uα(x)uα(y) = uα(x + y).
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Next we have the relations
uγ(x)uδ(y)uγ(x)−1uδ(y)−1 =

∏
iγ+jδ∈R:i,j>0 uiγ+jδ(cγ,δ;i,jx iy j) for

γ ̸= ±δ, using the given structure constants. It turns out to be
enough to impose these relations only on roots γ, δ both lying in
the span of two simple roots in ∆. Then we have the relations
tuγ(x)t−1 = uγ(γ(t)x) for t ∈ T, γ ∈ R, x ∈ k. Setting
nγ = uγ(1)u−γ(−1)uγ(1) we then require that
nγuγ(x)n−1

γ = u−γ(−x),n2
γ = tγ , where tγ(χ) = (−1)⟨χ,γ̌⟩ for χ ∈ X .

We further require that uγ(x)u−γ(−x−1)uγ(x) = γ̌(x)nγ and finally
that nαnβnα . . . = nβnαnβ . . ., with m(α, β) factors on each side, if
α, β ∈ R.
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Thus we define G as the group with generators t for t ∈ T and all
uα(x) as α runs over R and x over k and relations of the previous
slide. Another long calculation, using the Bruhat decomposition,
shows that G ∼= G (pp. 165-7). In particular, any two reductive
groups G,G′ with isomorphic root data D,D′ are isomorphic.
Note however that this argument does not amount to a proof
that a reductive group exists with any given root datum D, as it is
not a priori clear that the abstract group G defined above has
the structure of an affine variety.
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We do however get some extra mileage out of this argument.
First of all, since the structure constants cα,β;i,j lie in Z (or in Zp for
some prime p) we see that an analogue of G exists over any
basefield k, not necessarily algebraically closed. We will say
more later about the groups that arise in this way; they are
called Chevalley groups.
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Next, the proof shows that any automorphism ϕ of the torus T
preserving R (thus also X , X̌ , and Ř) induces an automorphism of
the corresponding algebraic group G, unique up to conjugation
by some t ∈ T (Theorem 9.6.2, p. 171). This is obvious for
automorphisms of T coming from the action of W , since any
such automorphism is realized by conjugation by a suitable
element of the normalizer NG(T ). But now some automorphisms
of R do not arise in this way, namely those arising from nontrivial
automorphisms of the Dynkin diagram D′ corresponding to R.
We will say more about such automorphisms, called diagram
automorphisms, later; they play a crucial role in the proof that
given any root datum D there is an algebraic group with that
datum. We will also return to Chevalley groups on the last day of
class.
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