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1 Introduction

Consider a real n-plane bundle ξ with Euclidean metric. Associated to ξ are a number
of auxiliary bundles: disc bundle, sphere bundle, projective bundle, k-frame bundle, etc.
Here “bundle” simply means a local product with the indicated fibre. In each case one
can show, by easy but repetitive arguments, that the projection map in question is indeed
a local product; furthermore, the transition functions are always linear in the sense that
they are induced in an obvious way from the linear transition functions of ξ. It turns out
that all of this data can be subsumed in a single object: the “principal O(n)-bundle” Pξ,
which is just the bundle of orthonormal n-frames. The fact that the transition functions of
the various associated bundles are linear can then be formalized in the notion “fibre bundle
with structure group O(n)”. If we do not want to consider a Euclidean metric, there is
an analogous notion of principal GLnR-bundle; this is the bundle of linearly independent
n-frames.

More generally, if G is any topological group, a principal G-bundle is a locally trivial
free G-space with orbit space B (see below for the precise definition). For example, if G is
discrete then a principal G-bundle with connected total space is the same thing as a regular
covering map with G as group of deck transformations. Under mild hypotheses there exists
a classifying space BG, such that isomorphism classes of principal G-bundles over X are in
natural bijective correspondence with [X,BG]. The correspondence is given by pulling back
a universal principal G-bundle over BG. When G is discrete, BG is an Eilenberg-Maclane
space of type (G, 1). When G is either GLnR or O(n), BG is homotopy equivalent to the
infinite Grassmanian GnR∞. The homotopy classification theorem for vector bundles then
emerges as a special case of the homotopy classification theorem for principal bundles.

As these examples begin to suggest, the concept principal bundle acts as a powerful
unifying force in algebraic topology. Classifying spaces also play a central role; indeed, much
of the research in homotopy theory over the last fifty years involves analyzing the homotopy-
type of BG for interesting groups G. There are also many applications in differential geometry,
involving connections, curvature, etc. In these notes we will study principal bundles and
classifying spaces from the homotopy-theoretic point of view.
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2 Definitions and basic properties

Let G be a topological group. A left G-space is a space X equipped with a continuous left
G-action G×X −→ X. If X and Y are G-spaces, a G-equivariant map is a map φ : X −→ Y
such that φ(gx) = gφ(x) for all g ∈ G, x ∈ X. Synonymous terms include equivariant (if the
group G is understood) and G-map (for short). This makes left G-spaces into a category.
A G-homotopy (or G-equivariant homotopy, or equivariant homotopy) between G-maps φ, ψ
is a homotopy F : X × I −→ Y in the usual sense, with the added condition that F be G-
equivariant (here G acts trivially on the I coordinate). This yields the G-homotopy category
of left G-spaces. Similar definitions apply to right G-spaces.

Now let B be a topological space. Suppose that P is a right G-space equipped with a
G-map π : P −→ B, where G acts trivially on B (in other words, π factors uniquely through
the orbit space P/G). We say that (P, π) is a principal G-bundle over B if π satisfies the
following local triviality condition:

B has a covering by open sets U such that there exist G-equivariant homeomorphisms
φU : π−1U −→ U ×G commuting in the diagram

π−1U U ×G

U

-φU

?

�
�

�
�

��	

Here U ×G has the right G-action (u, g)h = (u, gh). Note this condition implies that G
acts freely on P, and that π factors through a homeomorphism π : P/G −→ B (thus B “is”
the orbit space of P). Summarizing: A principal G-bundle over B consists of a locally trivial
free G-space with orbit space B.

A morphism of principal bundles over B is an equivariant map σ : P −→ Q over the
identity of B (i.e., inducing the identity map on the orbit space). This makes the collection
of all principal G-bundles over B into a category. The set of isomorphism classes of principal
G-bundles over B will be denote PGB. A principal G-bundle is trivial if it is isomorphic
to the product principal bundle B × G −→ B. Every principal bundle is locally trivial, by
definition.

Note that (P, π) is in particular a local product over B with fibre G. To be a principal G-
bundle, however, is a far stronger condition. Here are two striking and important properties
that illustrate this claim:

Proposition 2.1 Any morphism of principal G-bundles is an isomorphism.

Proof: Let σ : P −→ Q be a morphism. Suppose first that P = Q = B × G. Then
σ(b, g) = (b, f(b)g) for some function f : B −→ G; clearly f is continuous. Hence σ is an
isomorphism with σ−1(b, g) = (b, f(b)−1g). This proves the proposition in the case when P
and Q are trivial. Since every principal bundle is locally trivial, the general case follows
immediately.
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Proposition 2.2 A principal G-bundle π : P −→ B is trivial if and only if it admits a
section.

Proof: If P is trivial, then there is a section; this much is trivially true for any local product.
Conversely, suppose s : B −→ P is a section. Then the map φ : B × G −→ P given
by φ(b, g) = s(b)g is a morphism of principal bundles, and is therefore an isomorphism by
Proposition 2.1.

The difference between a principal G-bundle and a run-of-the-mill local product with fibre
G can be illustrated further in terms of transition functions. Suppose π : E −→ B is a local
product with fibre G, and U,V are open sets over which π is trivial, with U ∩ V nonempty.
Comparing the two trivializations leads to a homeomorphism (U ∩ V )×G −→ (U ∩ V )×G
of the form (x, g) 7→ (x, φ(x)g), where the transition function φ is a map from U ∩V into the
set of homeomorphisms from G to itself. In a principal G-bundle, each φ(x) is left translation
by an element of G, and φ : U ∩ V −→ G is continuous.

Given a principal G-bundle P over B and a map f : B′ −→ B, we can form the pullback
P ′ ≡ f ∗P ≡ B′ ×B P ; the pullback inherits a natural structure of principal G-bundle over
B′ from P. The reader should note the following two simple and purely categorical facts:
First, if Q is a principal G-bundle over B′, then bundle maps Q −→ f ∗P are in bijective
correspondence with commutative squares

Q P

B′ B

-

? ?
-

in which the top arrow is a G-equivariant map. Second, sections of the pullback bundle f ∗P
are in bijective correspondence with lifts in the diagram

P

B′ B
?p p p p p

p p p�
-

f

We conclude this section with an interesting special case of the pullback construction.
We can pull P back over itself:

P ×B P P

P B

-π′′

?

π′

?

π

-
π

Here π′ is projection on the lefthand factor, and defines a principal G-bundle structure
in which the G-action on P ×B P is on the righthand factor.
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Proposition 2.3 π′ : P ×B P −→ P is a trivial principal G-bundle over P.

Proof: The diagonal map P −→ P ×B P is a section; now apply Proposition 2.2.

Note that the trivialization obtained is the map P × G −→ P ×B P given by (p, g) 7→
(p, pg). By symmetry, a similar result holds for π′′, with the roles of the left and right factors
reversed.

Pulling P back over itself might seem a strange thing to do, and indeed we will not use this
construction in these notes. In some contexts, however, the isomorphism P ×G −→ P ×B P
is taken essentially as the definition of a principal bundle. This point of view is especially
important in algebraic geometry, where the coarseness of the Zariski topology makes local
triviality too stringent a condition to impose.

3 Balanced products and fibre bundles with structure

group

Note that any left G-action on a space X can be converted to right action—and vice-versa—
by setting xg = g−1x, x ∈ X.

If W is a right G-space and X is a left G-space, the balanced product W×GX is the quotient
space W ×X/ ∼, where (wg, x) ∼ (w, gx). Equivalently, we can simply convert X to a right
G-space as above, and take the orbit space of the diagonal action (w, x)g = (wg, g−1x); thus
W ×G X = (W ×X)/G. The following special cases should be noted:

(i) If X = ∗ is a point, W ×G ∗ = W/G.

(ii) If X = G with the left translation action, the right action of G on itself makes
W ×G G into a right G-space, and the action map W × G −→ W induces a G-equivariant

homeomorphism W ×G G
∼=−→ W .

Let G,H be topological groups. A (G,H)-space is a space Y equipped with a left G-action
and right H-action, such that the two actions commute: (gy)h = g(yh). Note that if Y
is a (G,H)-space and X is a right G-space, X ×G Y receives a right H-action defined by
[x, y]h = [x, yh]; similarly Y ×H Z has a left G-action if Z is a left H-space.

Proposition 3.1 The balanced product is associative up to natural isomorphism: Let X be
a right G-space, Y a (G,H)-space, and Z a left H-space. Then there is a natural homeomor-
phism

(X ×G Y )×H Z ∼= X ×G (Y ×H Z)

Thus we can write X ×G Y ×H Z without fear of ambiguity. The proof is left as an
exercise. The homeomorphism in question takes an equivalence class [x, y, z] on the left to
the equivalence class [x, y, z] on the right; the only problem is to show that this map and its
inverse are continuous. Here it is important to note the following trivial but useful lemma:
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Lemma 3.2 Let X be any G-space, π : X −→ X/G the quotient map. Then π is an open
map.

One reason this lemma is so useful is that while a product of quotient maps need not be
a quotient map, a product of open maps is open and therefore a quotient map. This fact is
needed in the proof of the proposition.

Note that if H is a subgroup of G, then G can be regarded as a (G,H)−space. Combining
the second example above with the proposition, we find that the symbol ×GG (or G×G) can
be “cancelled” whenever it occurs.

Corollary 3.3 Suppose X is a right G-space, Y a left H-space, where H is a subgroup of G.
Then X ×G G×H Y ∼= X ×H Y .

On the righthand side, X is regarded as an H-space by restricting the G-action. The
proof is trivial. Taking Y to be a point and applying the first example above, we have the
important special case:

Corollary 3.4 Suppose X is a right G-space and H is a subgroup of G. Then

X ×G (G/H) ∼= X/H

In the situation of this last corollary, suppose that X −→ X/G is a principal G-bundle.
We can ask whether X −→ X/H is a principal H-bundle. In general it is not, even when
X/G a point: For example, take G to be the additive group of real numbers, X = G acting
on itself by translation, and H = Q. Then R −→ R/Q is not a principal Q-bundle—for it were
locally trivial, then since R/Q has the trivial topology it would have to be globally trivial,
which is clearly absurd.

We eliminate this pathology according to the usual custom; that is, with a definition.
Call a subgroup H of G admissible if the quotient map G −→ G/H is a principal H-bundle.
For example, any subgroup of a discrete group is admissible. More interesting examples can
be found below.

Proposition 3.5 Suppose P −→ B is a principal G-bundle, and let H be an admissible
subgroup of G. Then the quotient map P −→ P/H is a principal H-bundle.

Proof: For any subgroup H, we have P/H = P ×G (G/H). Our quotient map P −→ P/H
can then be identified with P ×G G −→ P ×G (G/H). The proposition now follows easily
from the fact that H is admissible.

Note that for fixed W, X 7→ W ×G X is a functor, and similarly in the other variable.
Now suppose π : P −→ B is a principal G-bundle and F is a left G-space. The unique map
F −→ ∗ is of course G-equivariant, and so induces a map P ×GF −→ P ×G ∗ = B. It is easy
to check that this map is a local product with fibre F. A local product of this form is called
a fibre bundle with fibre F and structure group G, and denoted (P, p,B, F,G) if we want to
display all the ingredients explicitly. For example, as we will see in the next section, an
n-dimensional real vector bundle is a fibre bundle with fibre Rn and structure group GLnR.
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Once again, note that this is a much stronger condition than merely requiring a local
product structure. The point is that the transition functions for the local product are
required to take values in G. More precisely, suppose p : E −→ B is a local product with
fibre F, and U, V are intersecting open sets over which p is trivial. Then over U ∩V , we have
two different trivializations, and comparing these leads to an automorphism of (U∩V )×F of
the form (x, y) 7→ (x, f(x)(y)). Here f is a map from U∩V to the set of self-homeomorphisms
of F. We cannot discuss the continuity of f without first topologizing this set, and in any
event this would embroil us in point-set topological difficulties. If, on the other hand, p is
the projection of a fibre bundle with structure group G, then the transition functions f can
be interpreted as continuous maps into G. The automorphism above can be then be written
(x, y) 7→ (x, f(x)y).

If (P, p,B, F,G) is a fibre bundle, and f : X −→ B is a continuous map, the pullback
f ∗E is again a fibre bundle over X, with the same fibre and structure group. To make sense
of this, one has to know that the two different ways of forming the pullback are really the
same.

Proposition 3.6 Let p : E −→ B be a fibre bundle with fibre F and structure group G. Let
f : X −→ B be a map. Then there is a natural homeomorphism f ∗(P ×G F ) ∼= (f ∗P )×G F .

The proof is left as an exercise. Note there is a notational pitfall: Using another standard
notation for pullbacks, the conclusion can be written as X ×Y (P ×G F ) ∼= (X ×Y P )×G F .
But the roles of Y and G as subscripts here are totally different! In general, the pullback
X ×Y Z is a subspace of X ×Z, whereas a balanced product P ×G F is a quotient of P ×F .
As long as one does not confuse the two constructions, the exercise is straightforward.

We will see many examples of fibre bundles with structure group in the next two sections.

4 Vector bundles and principal GLn-bundles

Let ξ = (E, p,B) be a real vector bundle of dimension n. The associated principal GLnR-
bundle can be defined in two equivalent ways. The first is perhaps more vivid and intuitive,
while the second displays the group action more clearly. We emphasize that the two defi-
nitions are really little more than mild paraphrases of one another, based on the following
trivial fact: If W is a real vector space of dimension n, let VnW denote the space of n-frames in
W—that is, bases (v1, ..., vn)—and let Iso (Rn,W ) denote the space of linear isomorphisms

f : Rn
∼=−→ W . Then there is a natural homeomorphism Iso (Rn,W )

∼=−→ VnW given by
f 7→ (f(e1), ..., f(en)).

In the first definition, we set P = Pξ = Vnξ, where Vnξ denotes the n-frame bundle; that
is, the set of pairs (b, v) with b ∈ B and v = (v1, ..., vn) an n-frame in Eb. We topologize P
as a subspace of the Whitney sum nE = E ⊕ ... ⊕ E (n copies). Note that GLnR acts on
the right of nE by the rule (v1, ..., vn)A = (v′1, ..., v

′
n), where v′j =

∑
i viAij. It is not hard to

check that this action is free, and that it makes P into a principal GLnR-bundle over B. But
our second description of P makes this check even easier.

Consider the vector bundle Hom (εn, E), where εn denotes the n-dimensional product
bundle B×Rn, and recall that it can be identified with the n-fold Whitney sum E⊕ ...⊕E.
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Now GLnR acts on the left of εn by g(b, v) = (b, gv), inducing a right action on Hom (εn, E).
As our second definition of Pξ we take the subbundle Iso (εn, E) of Hom (εn, E) for which
the fibre over b ∈ B is the space of all isomorphisms Rn −→ Eb.

(Warning: For vector bundles E,E ′, do not confuse the bundle Hom(E,E ′) with the
vector space Hom(E,E ′). The latter is the space of global sections of the former. Similarly,
do not confuse the bundle Iso(E,E ′) with the set of isomorphisms Iso(E,E ′). Again, the
latter is the space of global sections of the former—and indeed Iso(E,E ′) is often the empty
set.)

Clearly GLnR acts freely on P. Using the local triviality of E, one easily checks that
P −→ B is a principal GLnR-bundle over B. Moreover, the natural map Iso (εn, ξ) −→ Vnξ

given by (b, f : Rn
∼=→ Eb) 7→ (b, (f(e1), ..., f(en))) is an equivariant homeomorphism. Hence

this definition of P agrees with the previous one.

Proposition 4.1 For any space B, there is a natural bijection

φ : PGLnRB
∼=−→ V ectRnB

given by P 7→ P ×GLnR Rn. The inverse ψ is given by ξ 7→ Pξ, as defined above.
Similarly,

PGLnCB
∼=−→ V ectCnB

Proof: It is clear that both constructions are well-defined on isomorphism classes. Now
suppose ξ is an n-plane bundle. Then there is an evident map

σ : Iso (εn, ξ)×GLnR Rn −→ E(ξ)

defined by σ([b, f, v]) = (b, f(v)). Here f : Rn
∼=→ Eb, and v ∈ Rn. (We are also following

our standard practice of including b in the notation to specify the fibre, even though this is
redundant.) Note that σ is well-defined, since if g ∈ GLnR then f(gv) = (fg)(v). To see
that σ is continuous, observe that over a trivializing neighborhood U for ξ, σ has the form

U ×GLnR×GLnR Rn
∼=−→ U × Rn

Since σ is clearly a linear isomorphism on fibres, σ is an isomorphism of vector bundles.
This shows φψ is the identity.

Now suppose we start with a principal GLnR-bundle P, and let ξ = P ×GLnR Rn. To
show that ψφ is the identity, we will show that P is isomorphic to Vnξ. By Proposition 2.1,
it is enough to construct an equivariant map τ : P −→ Vnξ. Let τ(x) = ([x, e1], ..., [x, en]).
Then τ is clearly continuous. To see that τ is equivariant, we identify Vnξ with Iso (εn, ξ)
as above. Then τ(x) = (b, fx), where b = [x] and fx : Rn −→ Eb maps ei to [x, ei]. Hence if
g ∈ GLnR, fxg maps ei to [xg, ei] = [x, gei]. In other words, τ(xg) = (τ(x))g, as required.

If the vector bundle ξ = (E, p,B) has a Euclidean metric, we can define an associated
principal O(n)-bundle in an analogous way. The analogue of our first definition is to take
P = V O

n ξ, the bundle of orthonormal n-frames. The analogue of the second definition is to
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take P = Isom(εn, ξ), the bundle whose fibre over b ∈ B is the space of isometries Rn ∼= Eb.
As before, it is easy to see that these two definitions are equivalent. Similarly, a complex n-
plane bundle with Hermitian metric has an associated principal U(n)-bundle. The following
lemma will be proved later, at least in the case when B is a CW-complex.

Lemma 4.2 Let ξ be a real (resp. complex) n-plane bundle with two Euclidean (resp. Her-
mitian) metrics β0, β1. Then the corresponding principal O(n)-bundles (resp. U(n)-bundles)
P0, P1 are isomorphic.

Assuming the lemma, the method of proof of Proposition 4.1 yields:

Proposition 4.3 For any paracompact Hausdorff space B, there are natural bijections

φ : PO(n)B
∼=−→ V ectRnB

and

PU(n)B
∼=−→ V ectCnB

Example 1: Let γ = γ1
n,R, the canonical line bundle over RP n. The associated principal

O(1)-bundle Pγ is just the usual covering map Sn −→ RP n, with O(1) ∼= Z/2 acting via the
antipodal involution. Hence Sn ×Z/2 R1 ∼= E(γ).

Example 2: Let γ = γ1
n,C, the canonical line bundle over CP n. The associated principal

U(1)-bundle Pγ is just the usual quotient map S2n+1 −→ CP n, with U(1) ∼= S1 acting in the
usual way via complex multiplication. Hence S2n+1 ×S1 C1 ∼= E(γ).

Example 3: Let τ = τSn denote the tangent bundle of Sn. Then the associated principal
O(n)-bundle Pτ is the space of pairs (x, v) with x ∈ Sn and v = (v1, ..., vn) an orthornormal
n-frame perpendicular to x. But this is just Vn+1Rn+1 = O(n + 1). Hence P −→ Sn can
be indentified with the standard quotient map O(n + 1) −→ Sn that exhibits Sn as the
homogeneous space O(n+ 1)/O(n).

Example 4. Using the principal bundle, the reader can now construct a plethora of fibre
bundles associated to a vector bundle. To give just one example, let E be a complex n-plane
bundle over B. The associated projective bundle q : P (E) −→ B can be constructed in ad hoc
fashion as the set of pairs (b, L) with b ∈ B and L a line through the origin in Eb. We then
give P (E) the unique topology compatible with the trivializations q−1U −→ U × CP n−1

inherited from E. But we now have a more systematic construction of such bundles: Let
P = Iso(εn, E) denote the principal GLnC-bundle associated to E. Using the natural action
of GLnC on CP n−1, we form the associated fibre bundle

P ×GLnC CP n−1 −→ B

To see that this new bundle agrees with the old one, we use the argument of Example 4:
Map (b, f, L) to (b, f(L)). Here f is an isomorphism Cn −→ Eb, and L ∈ CP n−1. Again this
map is well-defined on the balanced product, and yields a homeomorphism of spaces over B.
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Example 5. A k-dimensional distribution on a smooth n-manifold M, as defined in any text
on manifolds, is the same thing as a section of the bundle GkτM whose fibre at x ∈M is the
Grassmanian of k-planes in the tangent space at x. With principal bundles in hand, we can
identify this bundle as

GkτM = PτM ×GLnR GkR
n

Example 6. The reader should experiment with further variations on this theme: sphere
bundles, disc bundles, k-frame bundles, etc.

5 More examples

Example 1: If G is discrete, a principal G-bundle with connected total space P is the same
thing as a regular covering map with G as group of deck transformations.

To see this, first observe that any local product with discrete fibre and connected total
space is a covering (covering spaces have connected total spaces, by definition). So if π :
P −→ B is a principal G-bundle with G discrete and P connected, π is at least a covering
map. On the other hand, a covering map is regular if and only if its automorphism group
A acts transitively—and hence simply transitively—on the fibre over a basepoint b0. Here
we have G acting as a group of automorphisms of π, so that G ⊂ A, and the action is
simply transitive on fibres by the definition of principal bundle. This forces G = A: For if
a ∈ A, choose any x ∈ P . Then there is an element g ∈ G such that xg = xa (for the sake
of consistency, we let A act on the right). But a covering space automorphism (or “deck
transformation”) is uniquely determined by its value at a single point; hence g = a.

Conversely, if π : P −→ B is a regular covering with group G, it is almost immediate
from the definitions that π is a principal G-bundle.

If B has a universal cover (this is always the case if B is locally 1-connected), so that
covering spaces are classified by conjugacy classes of subgroups of the fundamental group
of B, the regular covering spaces are precisely those corresponding to normal subgroups of
π1B.1 In this case we can interpret all coverings as fibre bundles associated to the universal
cover B̃ −→ B, where B̃ is naturally a principal left π1B-bundle. Let q : E −→ B be any
covering space, and let S denote the fibre over a chosen basepoint. Then from basic covering
space theory we have a natural right π1B action on S, and if we choose s ∈ S with isotropy
group H, then we can identify E with B̃/H. By Corollary 3.4, this latter space in turn can
be identified with S ×π1B B̃, the associated bundle with fibre S.

Example 2: Suppose G is a Lie group, H ⊂ G a closed subgroup. Then H is admissible;
that is, the natural map p : G −→ G/H is a principal H-bundle. (See [Brocker-tom Dieck],
Theorem 4.3 p. 33.) In fact, p is a smooth principal bundle, meaning that all maps occuring
in the definition can be taken smooth. Recall also that if M is a homogeneous space of
G, then M is equivariantly diffeomorphic to G/H, where H is the isotropy group of any
point of M (loc. cit., 4.6). This leads to a variety of interesting examples. For example,

1So an alternative and probably better term is “normal covering”. Yet another term is “Galois covering”,
drawing on the extraordinarily close analogy between covering space theory and Galois theory.
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Sn ∼= O(n + 1)/O(n) exhibits Sn as the base space of a principal O(n)-bundle. In fact this
is the principal O(n)-bundle associated to the tangent bundle of Sn, as discussed in the
previous section.

Example 3: Suppose G is a Lie group acting smoothly and freely on the smooth manifold
M. In general, the orbit space M/G can be very badly behaved, and M −→M/G need not
be a principal bundle. (Consider, for example, the R-action on the torus given by the flow
associated to a vector field of “irrational slope”.) But a very useful result asserts that if G is
compact, then M/G is a smooth manifold and M −→M/G is a smooth principal G-bundle.
(loc. cit., exercise 3, p. 40.) This result holds even for noncompact G, provided that the
action is proper (loc. cit.).

For example, the natural projection V O
n Rn+k −→ GnRn+k from the orthonormal n-frames

to the Grassmannian is a principal O(n)-bundle—in fact, it is the principal bundle associated
to the vector bundle γnn+k as in the previous section.

Example 4. Suppose P −→ B is a principal G-bundle, and θ : G −→ GLnC is a continuous
representation of G. Then Cn receives a left G-space structure, and the balanced product P×G
Cn is evidently a vector bundle over B. This yields a functor from complex representations
of G to complex vector bundles over B that commutes with direct sum and tensor product.
For example, suppose P −→ B is the usual quotient map S2n+1 −→ CP n. This is the
principal S1-bundle associated to the canonical line bundle γ = γ1

n. If θ is the representation
S1 −→ GL1C given by z 7→ zk, k ∈ Z, the corresponding vector bundle is the k-th tensor
power ⊗kγ.

Of course similar remarks apply to real representations and real vector bundles.

Example 5: This is an important special case of the preceeding example. Let G be a
Lie group, H a closed subgroup. Then π : G −→ G/H is a principal H-bundle, so a
representation of H on V determines a vector bundle G ×H V ↓ G/H. In fact it is easy
to see that every G-equivariant vector bundle over G/H arises in this way. Consider, for
example, the tangent bundle τG/H . Since π is H-equivariant with respect to the conjugation
action of H on G (in the source), the differential dπ at the identity is a morphism from the
adjoint representation of H on g to TeH(G/H). Since π is submersive and maps H to a
point, we see that dπ induces an isomorphism of H-representations

g/h
∼=−→ TeH(G/H).

Using the adjoint property of G×H (−), we then obtain an isomorphism of vector bundles

G×H g/h
∼=−→ τG/H .

As a concrete illustration, consider the tangent bundle of a Grassmannian. To em-
phasize the naturality of the constructions involved, we avoid coordinates and start from
a complex vector space V of dimension n and the action of G = GL(V ). Choose a k-
dimensional subspace W and let H denote the stabilizer of W ; thus G/H ∼= GkCn. Now the
Lie algebra g = end V , while h = {A ∈ end V : AW ⊂ W}. Furthermore, we have an iso-

morphism of H-representations Hom (W,V/W )
∼=−→ g/h, induced by restricting A ∈ end V

10



to W and then post-composing with V −→ V/W . Hence we have a natural isomorphism
G×H Hom (W,V/W ) ∼= τG/H . But G×H W is just the tautologous bundle, while G×V/W is
the quotient (trivial bundle)/W . Identifying V with C and W with Ck, we conclude:

τGkCn ∼= Hom (γk, εn/γk).

For topological purposes, the quotient bundle could be replaced by the orthogonal comple-
ment of γk; we leave it as a quotient so that the isomorphism remains valid in the category
of algebraic varieties.

In the special case of a projective space (k = 1), by applying Hom (γ1,−) to the short
exact sequence

0 −→ γ1 −→ εn −→ εn/γ1 −→ 0

we obtain a short exact sequence

0 −→ ε1 −→ nγ1∗ −→ τCPn−1 −→ 0.

Again this sequence splits as topological vector bundles, although not algebraically (if it split
algebraically then by dualizing the splitting of the first map we would obtain an algebraic
section of γ1 that is not identically zero, which is impossible).

6 Equivariant maps as sections of bundles

In this section we assume various facts about Serre fibrations; see my Notes on Serre fibrations
for details.

The next proposition will be the key to the homotopy classification Theorem 7.4 below.
To motivate it, we consider a simple example. Suppose we want to construct sections (nec-
essarily with zeros) of the canonical line bundle γ over RP n. We could start with a function
f : Sn −→ R that is Z/2-equivariant in the sense that f(−x) = −f(x). For example, any
function on the northern hemisphere that vanishes on the equator extends uniquely to an
equivariant function. Now recall that E(γ) = {(L, v) ∈ RP n × Rn+1 : v ∈ L}. We then
define g : Sn −→ E(γ) by g(x) = ([x], f(x)x), and observe that g factors through the desired
section s:

Sn E(γ)

RP n

-g

?

p

�
�
�
���

s

In fact every section arises in this way; we can also use sections to construct equivariant
maps. For if s is given, we can set g = sp. Then g(x) = ([x], f(x)x) for some function
f satisfying f(−x)(−x) = f(x)(x), or f(−x) = −f(x). One can easily check that f is
continuous.

11



Recalling that E(γ) ∼= Sn ×Z/2 R, with Z/2 acting on R by the sign representation, we
conclude that there is a bijective correspondence between the set of Z/2-equivariant maps
Sn −→ R and the set of sections of the bundle Sn ×Z/2 R −→ Sn/(Z/2). In this form our
example admits a vast generalization.

Let π : P −→ B be a principal G-bundle, X a right G-space, and f : P −→ X a G-
equivariant map. Then the map P −→ P ×X given by p 7→ (p, f(x)) is also G-equivariant,
and passing to G-orbits yields a map s = sf : B −→ P ×G X that is in fact a section of the
fibre bundle map q : P ×G X −→ B. Write HomG(P,X) for the set of G-equivariant maps
P −→ X, and ΓP,X for the set of sections of q.

Proposition 6.1 Let P be a principal G-bundle over B, X a right G-space. Then there is a
natural bijection φ : HomG(P,X) −→ ΓP,X given by f 7→ sf .

The point of this result is that sections of a bundle are usually easier to construct and
study than equivariant maps.

Proof: If P ∼= B × G is a trivial bundle, then HomG(B × G,X) = Hom (B,X), the set of
continuous maps B −→ X. Similarly,

Γ(B ×G×G X −→ B) = Γ(B ×X −→ B) = Hom(B,X)

This proves the proposition for trivial bundles. The reader can then show directly that φ
is bijective in the general case. Alternatively, here is a slick categorical method for passing
from local to global information: Let {Ui} be an open cover of B with Pi ≡ P | Ui trivial.
There is an evident commutative diagram of sets

HomG(P,X)
∏
HomG(Pi, X)

∏
HomG(Pi ∩ Pj, X)

Γ(P ×G X −→ B)
∏

Γ(Pi ×G X −→ Ui)
∏

Γ((Pi ∩ Pj)×G X −→ Ui ∩ Uj)

-

?

φ

-

?

φ′

?

φ′′

- -

with exact rows, where both of the righthand horizontal arrows are supposed to be double
arrows but I don’t know the Tex for this. (Given maps of sets f, g : B −→ C, the equalizer
of the two maps is {b ∈ B : f(b) = g(b)}. Saying that the rows of the above diagram are
exact means that the first arrow is an isomorphism onto the equalizer of the second two.) A
diagram chase reminiscent of the 5-lemma shows that for any such diagram with φ′ bijective
and φ′′ injective, φ must be bijective.

Corollary 6.2 Suppose B is a CW-complex, i : A ⊂ B a subcomplex inclusion. Then if
either i is a weak equivalence or X is weakly contractible, any G-map P |A −→ X extends to
a G-map P −→ X.

12



Proof: This follows from the fact that if p : E −→ B is any Serre fibration and either i or p
is a weak equivalence, any section of p defined on A extends to a global section.

Now take X = Q to be another principal G-bundle over B, and let HomP (P,Q) denote
the set of morphisms of principal bundles over B.

Proposition 6.3 There is a natural bijection from HomP (P,Q) to the set of lifts in the
diagram

P ×G Q

B B ×B
?

πp p p p p
p p p p p�
-

∆

Hence HomP (P,Q) is in bijective correspondence with sections of the principal G-bundle
EP,Q given by pullback along ∆.

Proof: Note that HomP (P,Q) ⊂ HomG(P,Q) as the set of equivariant maps over B. It
follows that the bijection of the previous proposition takes HomP (P,Q) to the sections
γ : B −→ P ×G Q such that πQγ = 1B, where πQ is the natural projection onto Q/G = B.
But a section of this form is the same thing as a lift in the above diagram.

Corollary 6.4 Suppose B is a CW-complex and A ⊂ B is a subcomplex inclusion. Let P,Q
be principal G-bundles over B. Then if i is a weak equivalence, any morphism of principal
bundles P |A −→ Q|A extends to a morphism P −→ Q.

Proof: By the proposition we may reinterpret the corollary as saying that any section of
EP,Q over A extends to a section over B. So the result follows from the general fact about
Serre fibrations cited above.

In particular, we obtain homotopy invariance of principal bundles; see the next section.

7 Homotopy classification and universal bundles

In this section we usually assume that the base space is a CW-complex. Many of the results
below hold under the weaker assumption that the base space is paracompact (for an even
more general setting, see [Dold]), but the proofs are completely different. The CW-approach
involves techniques that are better suited to later homotopy-theoretic developments.

Proposition 7.1 Let X be an arbitrary space, P a principal G-bundle over X. Suppose that
B is a CW-complex and that f, g : B −→ X are homotopic maps. Then the pullbacks
f ∗P, g∗P are isomorphic as principal G-bundles over B.

13



Let F : B × I −→ X be a homotopy from f to g. By considering the pullback F ∗P , we
reduce at once to proving the following lemma:

Lemma 7.2 Let Q −→ B × I be a principal G-bundle, Q0 its restriction to B × 0. Then Q
is isomorphic to Q0 × I. In particular Q0 is isomorphic to Q1.

Proof: By Corollary 6.4, the given morphism over B×{0} extends to a morphism over B×I.
But any morphism is an isomorphism by Proposition 2.1.

In other words, B 7→ PG(B) is a homotopy functor from CW-complexes to sets. Thus a
homotopy equivalence induces a bijection on PG(−). In particular:

Corollary 7.3 If B is contractible, every principal G-bundle over B is trivial.

Remark: In view of Examples 4 and 5 above, Proposition 7.1 also implies that real and
complex vector bundles have the stated homotopy invariance property under pullback.

As another corollary, we prove Lemma 4.2 in the case of a CW-base. Suppose β0, β1

are Euclidean metrics on the real n-plane bundle ξ = (E, p,B). In other words, β0, β1 are
sections of the bundle Sym+ξ whose fibre at b ∈ B is the space of inner products on Eb.
(This bundle can in turn be constructed as the balanced product Pξ×GLnRSym

+Rn, but we

will not make use of this construction.) Since the space of inner products on a vector space
is a convex subset of the space of all bilinear forms, the homotopy βt = (1− t)β0 + tβ1 is a
homotopy through Euclidean metrics from β0 to β1. More precisely, β defines a Euclidean
metric on π∗ξ, where π : B × I −→ B is the projection. Let P denote the principal O(n)-
bundle associated to P. Applying Proposition 7.1 to the inclusions i0, i1 : B −→ B × I, we
conclude that P0

∼= P1 as desired. The Hermitian case is proved the same way.

Now recall that a space X is said to be weakly contractible ifX −→ ∗ is a weak equivalence;
that is, for all n ≥ 0, every map Sn −→ X extends to a map Dn+1 −→ X. Every contractible
space X is weakly contractible, and by Whitehead’s theorem every weakly contractible CW-
complex is contractible.

Theorem 7.4 Suppose P −→ B is a principal G-bundle with P weakly contractible. Then
for all CW-complexes X, the map φ : [X,B] −→ PGX given by f 7→ f ∗P is bijective.

We then call B a classifying space for G, and P a universal G-bundle. We will see below
that the converse of Theorem 7.4 holds also.

Proof: Suppose P is weakly contractible. We first show φ is surjective. Let Q −→ X be a
principal G-bundle. Applying Corollary 6.2 to the CW-pair (X, ∅), we get a G-map Q −→ P .
Passing to orbits yields a map f : X −→ B and a morphism Q −→ f ∗P of principal bundles
over X. Since any such morphism is an isomorphism, this proves the surjectivity.

Now suppose given maps f0, f1 : X −→ B and an isomorphism ψ : f ∗0P
∼=−→ f ∗1P .

Setting Q = f ∗0P , we see that f0 and f1 are both classifying maps for Q; i.e. are covered
by principal bundle maps to P . Consider the bundle R = Q × I −→ X × I. The G-map
R|X×{0,1} −→ P extends to a G-map R −→ P by Corollary 6.2. Passing to G-orbits yields
the desired homotopy. This shows φ is injective.
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Proposition 7.5 Suppose a universal G-bundle P −→ B exists. Then
a) B can be taken to be a CW-complex;
b) a CW-classifying space B is unique up to canonical homotopy equivalence;
c) P is unique up to G-homotopy equivalence.

Proof: For any space B, we can choose a CW-complex B′ and a weak equivalence g : B′ −→
B. Using the exact homotopy sequence of a Serre fibration and the 5-lemma, it follows that
g∗P is also weakly contractible. This proves (a). Then (b) follows from Yoneda’s lemma,
since B represents the functor PG(−) from the homotopy category of CW-complexes to Sets.
Part (c) is left as an exercise.

For this theory to be of any use, we need to know classifying spaces exist. The following
theorem is due to [Milnor].

Theorem 7.6 Let G be any topological group. Then there exists a classifying space for G.

The customary notation is to write BG for “the” classifying space of G, and EG for the
universal bundle over BG. Bear in mind, however, that in these notes BG is well-defined
only up to homotopy-equivalence, and similarly for EG. A particular choice of BG will be
called a model for BG. Milnor constructs explicit, functorial models for BG.

Remark: Our definition of classifying space and universal bundle is weaker than the def-
inition one commonly finds in the literature (cf. [May]). The stronger definition requires
EG to be contractible instead of just weakly contractible, but also requires the bundles in
question to be “numerable”. See the note below on [Dold].

Remark: Using Theorem 7.6, we can prove the converse of Theorem 7.4. Suppose P ′ −→ B′

is a principal G-bundle having the property that [−, B′] classifies principal G-bundles on the
homotopy category of CW-complexes. We want to show that P ′ is weakly contractible. Let
P −→ B be as in Theorem 7.6. Then P and P ′ are G-homotopy equivalent by part (c)
of Proposition 7.5. In particular they are homotopy equivalent, and therefore P ′ is weakly
contractible.

We will prove Milnor’s theorem in some important special cases. Consider first the case
G = GLnR. Recall that the infinite Grassmannian GnR∞ is a CW-complex, and that the
“infinite Stiefel manifold” VnR∞ is a local product over GnR∞ with fibre GLnR. In fact the
natural map q : VnR∞ −→ GnR∞ is a principal GLnR-bundle.

Theorem 7.7 q : VnR∞ −→ GnR∞ is a universal GLnR-bundle, and hence GnR∞ is a
classifying space for GLnR.

Proof: We have to show that VnR∞ is weakly contractible. The Gramm-Schmidt process
shows that the subspace V O

n R∞ of orthonormal frames is a deformation retract of VnR∞, and
we will show instead (this is only a matter of convenience) that the orthonormal frames are
weakly contractible. Since πiV

O
n R∞ is the direct limit of the πiV

O
n Rn+k as k −→ ∞, it is

enough to show:
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Lemma 7.8 πiV
O
n Rn+k = 0 for i < k.

The proof of the lemma is an easy induction, using the long exact sequence of the evident
fibration p : V O

n Rn+k −→ Sn+k−1. Note that the fibre is V O
n−1Rn+k−1. Note also that we now

have an easy way of showing that p is a local product, and hence a Serre fibration: p is
just the (n− 1)-frame bundle associated to the principal O(n+ k− 1)-bundle of the tangent
bundle of Sn+k−1.

This completes the proof of the theorem.

Thus BGLnR ∼= GnR∞. By a similar argument, we find that V O
n R∞ −→ GnR∞ is a uni-

versal O(n)-bundle (V O
n denotes orthonormal n-frames). Hence BO(n) ∼= GnR∞. Similarly,

BGLnC ∼= GnC∞ ∼= BU(n). Note these spaces are also classifying spaces for vector bundles
(cf. example 4 above). So we have the corollary:

Corollary 7.9 For all CW-complexes X, the map [X,GnR∞] −→ V ectRnX given by f 7→
f ∗γn is bijective. The analogous result with R replaced by C also holds.

We can now easily prove the following special case of Milnor’s theorem.

Theorem 7.10 Let G be a Lie group that embeds as a closed subgroup of some GLnR. Then
a classifying space BG exists.

Proof: Take EG = VnR∞, regarded as a right G-space, and BG = VnR∞/G. By Propo-
sition 3.5, EG −→ BG is a principal G-bundle, and EG is weakly contractible as shown
above.

Remark: Not every Lie group can be so embedded. For example, it is known that the
universal covering group of SL3R admits no faithful representations (this is far from obvious!).
On the other hand, every compact Lie group G embeds as a closed subgroup of GLnR for
some n ([Brocker-tom Dieck], p. 136).

Suppose now that G is a discrete group. Recall that there exists a CW-complex K(G, 1)
such that π1K(G, 1) = G and all other homotopy groups of K(G, 1) vanish; these properties
characterize K(G, 1) up to homotopy equivalence.

Theorem 7.11 Let G be a discrete group. Then any K(G, 1) is a classifying space for G.

Proof: Let EG be the universal cover of K(G, 1). Then p : EG −→ K(G, 1) is a principal
G-bundle, and p induces an isomorphism on πn for n > 1. Since EG is also simply-connected,
it is weakly contractible (in fact contractible, since EG is also a CW-complex).

This proves Milnor’s theorem for discrete groups. For example, BZ = S1 and EZ = R. It
should be remarked that Milnor’s general construction is not difficult; the interested reader
should consult the original paper [Milnor].
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8 Induced maps of classifying spaces

We assume that a choice of CW-classifying space BG has been fixed for each topological
group G.

Let θ : H −→ G be a homomorphism of topological groups. Then G receives the structure
of left H-space: h · g = θ(h)g. Combined with the action of G on itself by right translation,
this makes G a (H,G) − space. If P −→ B is a principal H-bundle, we can then form the
balanced product P ×H G. If it is necessary to display θ to avoid confusion, we write this
as P ×H,θ G −→ B. One easily checks that the natural right G-action on P ×H,θ G is free,
and that P ×H,θ G −→ B is a principal G-bundle. Thus we have a natural transformation
Pθ : PHB −→ PGB.

It follows from Yoneda’s lemma that there is a unique homotopy class Bθ : BH −→ BG
inducing Pθ. In fact Bθ is just a classifying map for the principal G-bundle EH ×H,θ G −→
BH.

Proposition 8.1 With this definition of Bθ, G 7→ BG is a functor from the category of
topological groups to the homotopy category of CW-complexes.

Proof: If H = G and θ is the identity, Bθ classifies EG×GG ∼= EG and hence is the identity
(as homotopy class). Now suppose we are given a composite homomorphism

H
θ−→ G

τ−→ K

We must show that B(τ ◦θ) = B(τ)◦B(θ). Equivalently, we must show that Pτθ = PτPθ.
Let P be a principal H-bundle over a space B. Then

(P ×H,θ G)×G,τ K ∼= P ×H,θ (G×G,τ K) ∼= P ×H,τθ K
This proves the proposition.

As it stands, our definition of Bθ applies only to CW -models for BH,BG. If we have
models BH, BG that are not necessarily CW , and a map f : BH −→ BG covered by a
bundle map EH ×H,θ G −→ EG, we will call f a model for Bθ.

Remark: As noted earlier, Milnor’s construction of BG gives a functor to the category
of topological spaces, as opposed to merely the homotopy category (see also [May], p. 126
and p. 196). There is also a strictly functorial way to replace any space by a CW-complex;
applying this construction to Milnor’s BG yields a strictly functorial, CW-version of BG
that avoids the fussing over CW-models that our approach requires. But this alternative
comes with its own baggage, namely the machinery of simplicial sets, and we prefer to avoid
it here.

8.1 Examples of induced maps

Suppose we are given a map f : BH −→ BG and wish to identify it as a model for Bθ for
some homomorphism θ : H −→ G. Proceeding directly from the definition, what we must
show is that there is a bundle map f̃ :
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EH ×H,θ G EG

BH BG

-f̃

? ?
-

f

When G is one of the classical groups O(n), U(n), Sp(n) (or GLnR, GLnC, GLnH), this
condition can be reformulated in terms of vector bundles. Taking G = U(n) to illustrate,
suppose we are given a homomorphism θ : H −→ U(n).

Proposition 8.2 Bθ classifies the vector bundle EH×H,θCn over BH. The analogous result
holds for real or quaternionic vector bundles.

Proof: The principal bundle associated to EH ×H,θ Cn is just EH ×H,θ U(n), so this is
immediate.

Example 1. Let i : O(n) −→ U(n) denote the inclusion. The universal vector bundle γn
over BO(n) has total space EO(n)×O(n)Rn, and hence its complexification is EO(n)×O(n)Cn.
Thus Bi : BO(n) −→ BU(n) classifies γn⊗ C. If an explicit geometric model is desired, one
can take the natural map GnR∞ −→ GnC∞.

The reader should study in similar fashion the induced maps associated to the inclusions
U(n) ⊂ O(2n), U(n) ⊂ Sp(n), Sp(n) ⊂ U(2n).

Example 2. Consider the automorphism σ of U(n) given by complex conjugation: σ(A) =
A. Then Bσ : BU(n) −→ BU(n) classifies the conjugate γn,C over the universal complex
vector bundle γn,C. This is clear because E(γn,C) = EU(n) ×U(n) Cn and hence E(γn,C) =
EU(n) ×U(n),σ Cn. Here an explicit geometric model is given by complex conjugation on
GnC∞.

Example 3. Consider the determinant det : U(n) −→ S1. Then Bdet : BU(n) −→ CP∞

classifies the n-th exterior power ∧nγn,C. Once again this is clear from Proposition 8.2:
E(∧nγn,C) = EU(n)×U(n) ∧nCn, where the action of U(n) on ∧nCn is multiplication by the
determinant.

Exercise. Suppose θ : G −→ G is an inner automorphism of G. Show that Bθ is homotopic
to the identity.

8.2 The induced map of an inclusion

Suppose i : H −→ G is the inclusion of an admissible subgroup. Then there is an alternative
way to think about the induced map Bi: Recall that since H is admissible (i.e., G −→ G/H
is a principal H-bundle), EG −→ EG/H is a universal principal H-bundle and so EG/H is
a classifying space for H. Furthermore, there is a map of principal G-bundles
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EG×H G EG

BH = EG/H EG/G = BG

-π̃

? ?
-

π

where π̃[e, g] = eg. Recalling that EG/H = EG×G (G/H), we have the following result:

Proposition 8.3 If i : H −→ G is inclusion of an admissible subgroup, then
π : EG×G (G/H) −→ BG is a model for Bi.

Example: Consider j : U(n) ⊂ O(2n) and the induced map Bj : BU(n) −→ BO(2n). By
the method of Proposition 8.2, we know that Bj classifies the underlying real vector bundle
of γn,C. We also have an obvious geometric model: the natural embedding GnC∞ ⊂ G2nR∞.
Proposition 8.3, on the other hand, gives a very different model of Bj. We are now thinking
of BU(n) as EO(2n)×O(2n) (O(2n)/U(n)), or equivalently as the space of pairs (W,J) with
W ∈ G2nR∞ and J a complex structure on W . Furthermore, our model for Bi is now a local
product with fibre O(2n)/U(n)).

Examples of this type will be studied further below.

9 Products of classifying spaces

Proposition 9.1 Let G,H be topological groups. Then the natural homotopy class

B(G×H) −→ BG×k BH
is a homotopy equivalence.

Remark: Recall that the notation ×k means that the product topology is to be replaced
by the associated compactly-generated topology, which in this case is also the CW-topology.
In general this topology is strictly finer than the product topology, although if BG and BH
have countably many cells then the two topologies agree. In any case, for arbitrary spaces
X, Y the natural map X ×k Y −→ X ×Y is a weak equivalence; for our purposes, therefore,
the distinction is not very important. Note, however, that X×k Y is the categorical product
in the full subcategory of compactly-generated Hausdorff spaces.

Proof: It is readily checked that if P −→ X is a principal G-bundle and Q −→ Y is a
principal H-bundle, then P × Q −→ X × Y is a principal G × H-bundle. In particular,
this is true for EG × EH −→ BG × BH. Since a product of weakly contractible spaces is
weakly contractible, it follows from Theorem 7.4 that BG × BH is a classifying space for
G ×H. It may not be a CW-complex, but this deficiency is easily remedied as above: We
retopologize BG × BH with the compactly-generated topology, and pull back EG × EH
along the canonical map BG×k BH −→ BG×BH.

Remark: It follows that there must be a natural transformation PGB×PHB −→ PG×H(B)
inverse to (PπG

,PπH
), and indeed one can see this explicitly as follows: Suppose given a
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principal G-bundle Q −→ B and a principal H-bundle R −→ B. Then Q×R −→ B ×B is
a principal G×H-bundle over B×B. Setting P = ∆∗(Q×R), where ∆ is the diagonal, we
obtain a principal G×H-bundle over B.

10 Change of structure group

Let E −→ B be a vector bundle. Some typical questions we might ask about E are: Does
it admit a nonvanishing section? Is it trivial? Does it decompose in some nontrivial way as
a direct sum of two subbundles? If it is a real vector bundle, is orientable? Does it admit a
complex structure? A Euclidean metric? If it is complex, is it the complexification of some
real vector bundle? Does it admit a Hermitian metric?

Using principal bundles and classifying spaces, these questions can be formulated and
studied in a uniform and very elegant way. Suppose P −→ B is a principal G-bundle, and
H is a subgroup of G. We say that P is induced from an H-bundle if there exists a principal
H-bundle Q and an isomorphism Q×H G ∼= P . Writing i : H ⊂ G for the inclusion, this is
just P i, a special case of the functor Pθ defined in the previous section. For example, if H is
the trivial subgroup this just means that P is a trivial bundle. If E −→ B is a fibre bundle
with fibre F and structure group G, we say that the structure group of the bundle can be
reduced to H if the associated principal G-bundle is induced from a principal H-bundle.

We assume for the rest of this section that the base space B is a CW-complex.

Theorem 10.1 Suppose H is an admissible subgroup of G (for example, G is a Lie group
and H is a closed subgroup). Then the following are equivalent:

a) P is induced from an H-bundle
b) P ×G (G/H) −→ B admits a section
c) The classifying map f of P lifts to BH, up to homotopy:

BH

B BG
?

-
f

p p p p p
p p p�f̃

Proof: (a) ⇒ (b): Suppose P ∼= Q×H G for some principal H-bundle Q. Then

P ×G (G/H) = P ×G G×H ∗ = Q×H G×G G×H ∗ = Q×H G×H ∗ = Q×H (G/H)

The identity coset in G/H is an H-fixed point, and so defines an H-equivariant map
∗ −→ G/H. Applying the functor Q ×H (−) to this map yields the desired section B −→
P ×G (G/H).

(b) ⇒ (c): Since H is admissible, we can take EG/H = EG ×G (G/H) as a model for
BH. With this model, we claim there is a strict lift (as opposed to a lift up to homotopy) in
the diagram
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EG×G (G/H)

B BG
?

-
f

p p p p p
p p p p p

p
�

where f is a classifying map for P. For a lift as indicated in the diagram is the same thing
as a section of the pullback f ∗(EG×G (G/H)), and this pullback is precisely P ×G (G/H).

(c) ⇒ (a): If the lift f̃ exists, we simply take Q to be the pullback f̃ ∗EH. It is easy to
check that this works.

Note: We only used the assumption that H is admissible in the implication (b) ⇒ (c).

Example 1: Let G = GLnR, H = O(n). Then G/H is homeomorphic to the group of
upper triangular matrices with positive diagonal entries, and so is contractible. Hence, using
criterion (b), any GLnR-bundle is induced from an O(n)-bundle. In other words, every real
vector bundle admits a Euclidean metric. Similarly, every GLnC-bundle is induced from a
U(n)-bundle; equivalently, every complex vector bundle admits a Hermitian metric.

Example 2: Let ξ = (E, p,B) be a real n-plane bundle with Euclidean metric. Then E
is orientable if and only if the structure group of ξ can be reduced from O(n) to SO(n).
Note that in criterion (b), G/H = O(n)/SO(n) = {±1} is the set of orientations of Rn, so
P ×O(n) (O(n)/SO(n)) is just the usual orientation bundle.

Example 3: Let ξ = (E, p,B) be a real 2n-plane bundle. We can ask whether or not E
admits a complex structure—in other words, whether or not E is the underlying real vector
bundle of some complex vector bundle. This amounts to reducing the structure group from
O(2n) to U(n). Since O(2n)/U(n) is the space of orthogonal complex structure maps on
R2n, criterion (b) says that there is a complex structure map J on E (i.e., a bundle map such
that J2 = −I). Criterion (c) says that the classifying map for ξ can be lifted from G2nR∞

to GnC∞:

GnC∞

B G2nR∞
?p p p p p

p p p p p�
-

Note this gives a simple necessary condition for the existence of a complex structure: All
the odd Stiefel-Whitney classes of E must vanish.

It is also possible to consider all complex structure maps, instead of just the orthogonal
ones. Then O(2n)/U(n) should be replaced by GL2nR/GLnC. Topologically, the distinc-
tion is not significant because the inclusion O(2n)/U(n) ⊂ GL2nR/GLnC is a homotopy
equivalence.
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Example 4: Let ξ = (E, p,B) be a complex n-plane bundle. We can ask whether or not E
is the complexification of a real n-plane bundle τ . This amounts to reducing the structure
group from U(n) to O(n). Recall that U(n)/O(n) is precisely the Lagrangian Grassmannian
of orthogonally totally real subspaces of Cn; that is, n-dimensional real subspaces V ⊂ Cn

such that V is orthogonal to iV . Hence criterion (b) amounts to picking out a suitable totally
real subspace in each fibre, yielding the desired real n-plane bundle as a real sub-bundle of ξ.
Alternatively, one can identify U(n)/O(n) with the space of conjugate-linear involutions on
Cn; then criterion (b) provides a conjugate linear bundle involution of E, whose fixed point
set is the desired real sub-bundle.

Criterion (c) says that the classifying map for ξ can be lifted from GnC∞ to GnR∞:

GnR∞

B GnC∞
?p p p p p

p p p p p�
-

Again, one can deduce a necessary condition on characteristic classes for the existence
of τ . This time, however, it is easier to proceed directly without using classifying spaces: If
a complex vector bundle is the complexification of a real vector bundle, then its odd Chern
classes have order two (exercise, or see Milnor’s Characteristic Classes).

It is also possible to consider all totally real subspaces; that is, n-dimensional real sub-
spaces V ⊂ Cn such that V and iV are independent (V + iV = Cn). Then U(n)/O(n) should
be replaced by GLnC/GLnR. Topologically, the distinction is not significant because the
inclusion U(n)/O(n) ⊂ GLnC/GLnR is a homotopy equivalence.

Example 5: Our definition of “reduction of structure group” assumed that H was a subgroup
of G. More generally, one can consider an arbitrary homomorphism of topological groups
θ : H −→ G and then define induced bundles, reduction of structure group and so on using
the functor Pθ discussed in the previous section (although condition (b) of the theorem no
longer applies). As an interesting example, let Spin(n) −→ SO(n) denote the double cover
of SO(n). Recall that for n > 2, this is the universal cover. Then an oriented n-plane bundle
ξ admits a spin structure if the structure group of ξ can be reduced (“lifted” would be a
better term here) to Spin(n). In the next section we will show that ξ admits a spin structure
if and only if its second Stiefel-Whitney class vanishes (recall that orientability is equivalent
to the vanishing of the first Stiefel-Whitney class).

Exercise: Express the following two problems as instances of the “reduction of structure
group” problem, and interpret conditions (b) and (c) of the theorem:

(i) Given a real or complex n-plane bundle ξ, and r+ s = n, does ξ split as the Whitney
sum of an r-plane bundle and an s-plane bundle?

(ii) Given a real or complex n-plane bundle ξ, and k ≤ n, does ξ admit k sections that
are everywhere linearly independent?

Remark: Theorem 9.1 gives conditions for the existence of a structure group reduction.
One can go further and ask for a classification of all structure group reductions (from G to
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a specified H) of a given bundle. For example, if a real vector bundle ξ admits a complex
structure, we would like to classify the distinct complex structures on ξ. Here on has to make
precise what is meant by “distinct”; that is, one has to specify the right equivalence relation
on the set of all complex structures on ξ. We will not pursue this question here, but further
investigation would make an interesting project for the reader. Roughly speaking, the idea
is to show that the following sets of equivalence classes are the same (see Theorem 9.1): (i)
isomorphism classes of pairs (Q, θ) with Q a principal H-bundle and θ : Q ×H G −→ P an
isomorphism; (ii) homotopy classes of sections of P ×G (G/H); and (iii) homotopy classes of
lifts f̃ , where f̃ is as in part (c) of Theorem 9.1. Part of the problem, of course, is to make
all this precise.

11 Homotopical properties of classifying spaces

This section requires more background in homotopy theory than the previous sections.

Theorem 11.1 Let G be any topological group. Then G is weakly equivalent to the loop
space ΩBG.

There are two ways to prove this theorem; both are instructive, and are left as exercises.
The first is to show directly that G and ΩBG represent the same functor, namely X 7→
PG(S1 ∧X+), on the homotopy category of CW-complexes. The second is to prove a much
more general result: If p : E −→ B is a pointed Serre fibration and E is weakly contractible,
then the fibre F is weakly equivalent to ΩB. Alternatively, see Theorem 11.3 below.

Corollary 11.2 For all n ≥ 1, πnBG ∼= πn−1G.

This implies, for example, that a path-connected group has a simply-connected classifying
space.

We can generalize Theorem 11.1 as follows:

Theorem 11.3 Let G be any topological group, H an admissible subgroup. Then the homotopy-
fibre of BH −→ BG is G/H, up to weak equivalence.

Theorem 11.1 is the case when H is the trivial subgroup.

Proof: We have already seen that if i : H −→ G is the inclusion, then as a model for Bi we
can use EG×G (G/H) −→ BG. This map is a Serre fibration with fibre G/H, and therefore
G/H is weakly equivalent to the homotopy-fibre Lπ. (See Notes on Serre fibrations.)

Thus we have a fibre sequence G/H
j−→ BH −→ BG, where j classifies the principal

H-bundle G −→ G/H.

Example 1. In one of the standard inductive calculations of H∗(BO(n); Z/2), a key lemma
identifies BO(n) ∼= GnR∞ as the sphere bundle of γn+1 over BO(n + 1), up to homotopy
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equivalence (then one can use the Gysin sequence). Here this lemma appears as the fibre
sequence

Sn = O(n+ 1)/O(n)
j−→ BO(n) −→ BO(n+ 1),

where j classifies the tangent bundle. Similar remarks apply to U(n) ⊂ U(n + 1) and
Sp(n) ⊂ Sp(n+ 1).

Example 2. Let T n ⊂ U(n) denote the diagonal matrices. Then there is a fibre sequence

U(n)/T n
j−→ BT n

Bi−→ BU(n),

where BT n ∼= (CP∞)n, U(n)/T n is manifold of complete flags in Cn, and j classifies the
evident n-tuple of complex line bundles over the flag manifold.

Example 3. In the fibre sequence

U(n)/O(n)
j−→ BO(n) −→ BU(n),

we can identify U(n)/O(n) with the Lagrangian Grassmanian of totally real subspaces of Cn.
Then j can be taken as the natural embedding U(n)/O(n) ⊂ GnR2n ⊂ GnR∞. Note that j
classifies the universal example of an n-plane bundle with trivial complexification.

Example 4. In the fibre sequence

Sp(n)/U(n)
j−→ BU(n) −→ BSp(n),

we can identify Sp(n)/U(n) with the Grassmanian of maximal isotropic subspaces for the
standard symplectic (=skew-symmetric + non-degenerate) form on C2n. Thus Sp(n)/U(n) ⊂
GnC2n ⊂ GnC∞, and j classifies the universal example of a complex n-plane bundle with
trivial symplectification.

Example 5. Contemplate the fibre sequences as above associated with O(2n)/U(n) and
U(2n)/Sp(n).

Example 6. Let G be a discrete group, H any subgroup. Then up to homotopy, BH −→ BG
is the covering space of BG corresponding to the subgroup H ⊂ G = π1BG. The homotopy-
fibre is the discrete space G/H.

Remark. Recall that for any pointed map f : X −→ Y , maps of a space W into the
homotopy-fibre Lf correspond to maps φ : W −→ X together with a nullhomotopy of f ◦ φ.
Thus homotopy classes of maps into G/H should correspond in some sense to principal H-
bundles P −→ W together with a trivialization of the induced principal G-bundle P×HG −→
W (cf. the examples above). As an interesting thought experiment, contemplate how you
might make this precise.

When the subgroup H is normal, it turns out that we can extend the fibre sequence in
the other direction:
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Theorem 11.4 Let G be any topological group, H an admissible normal subgroup. Then

there is a homotopy-fibre sequence BH
Bi−→ BG

Bρ−→ B(G/H), where i : H −→ G is the
inclusion and ρ : G −→ G/H is the quotient map.

Proof: First note the following general fact: If P −→ B is a principal G-bundle, and X is
any G-space, then P × X −→ P ×G X is again a principal G-bundle. In particular, when
P = EG and X is weakly contractible, we conclude that EG×G X is a model for BG.

Here we will take X = E(G/H), with G acting in the evident way. Then EG×GE(G/H)
is a model for BG, and one can easily check that the natural map

EG×G E(G/H) −→ [E(G/H)]/G = [E(G/H)]/(G/H) = B(G/H)

is a model for Bρ. Now since H is normal, we can take the orbits of any G-space Y by first
taking the H-orbits and then taking the G/H-orbits: Y/G = (Y/H)/(G/H). Furthermore
EG/H is a model for BH, since H is admissible. Thus

EG×G E(G/H) = BH ×G/H E(G/H).

This also show that the model for Bρ constructed above can be identified with the fibre
bundle

E(G/H)×G/H BH −→ B(G/H)

and hence Bρ has homotopy-fibre BH, as desired. Finally, one can easily check that the
resulting map BH −→ BG is indeed a model for Bi.

Example 7. The exact sequences 1 → SO(n) → O(n) → Z/2 → 1 and 1 → SU(n) →
U(n)→ S1 → 1 give rise to fibre sequences

BSO(n) −→ BO(n) −→ RP∞

and

BSU(n) −→ BU(n) −→ CP∞.

Example 8. Consider the exact sequence of groups

1 −→ Z/2 −→ Spin (n) −→ SO(n) −→ 1

This induces a homotopy-fibre sequence

RP∞ −→ BSpin(n) −→ BSO(n)

This leads to a cohomological criterion for the existence of a Spin-structure. Let ξ be an
oriented n-plane bundle over B, f : B −→ BSO(n) a classifying map for ξ. Let Oξ denote
the primary obstruction to producing a lift in the diagram
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BSpin(n)

B BSO(n)
?p p p p p

p p p p p
p
�

-
f

Since RP∞ is an Eilenberg-Maclane space of type (Z/2, 1), this primary obstruction is
the only obstruction. The universal obstruction class (obtained by taking B = BSO(n) and
f the identity) lies in H2(BSO(n); Z/2), which we know is isomorphic to Z/2 with generator
w2 = w2(γ̃n). Hence it is either zero or w2. If it is zero then BSpin(n) −→ BSO(n) admits a
section. But this is impossible since then RP∞ −→ BSpin(n) would induce a monomorphism
on homotopy groups, contradicting the fact that BSpin(n) is simply-connected (to see this
last point, use the corollary above). Thus if f classifies the oriented n-plane bundle ξ, we
conclude that ξ admits a spin-structure if and only if w2ξ = 0.
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