Definition of Cosine

November 27, 2013

Now that we have a definition of arc length we can define the functions sine and cosine. Let us use the parametrization $(-t, \sqrt{1-t^2}), -1 \le t \le 1$ for the the unit semicircle in the upper half plane. The arc length from (1,0) to $(-t, \sqrt{1-t^2})$ is $s(t) = \int_{-1}^t \frac{dx}{\sqrt{1-x^2}}$. The traditional notation for arc length on the circle is θ , so we will switch to that notation: $\theta(t) = \int_{-1}^t \frac{dx}{\sqrt{1-x^2}}$. Since $\frac{d\theta}{dt} > 0$ the inverse function theorem implies that t is a differentiable function of $t(\theta)$. We define $\cos \theta = -t(\theta)$, the x-coordinate of the point on the circle of arc length, θ from (1,0). We define $\sin \theta = \sqrt{1-\cos^2(\theta)}$. Now we have

Theorem 1.

$$fracd\cos\theta d\theta = -\sin\theta$$
$$fracd\sin\theta d\theta = \cos\theta.$$

Proof.

$$\frac{d\cos\theta}{d\theta} = -\frac{dt}{d\theta}$$

$$= -\frac{1}{\frac{d\theta}{dt}}$$

$$= -\sqrt{1 - t^2}$$

$$= -\sin\theta.$$

This proves the first equality. The second equality follows from the definition of $\sin \theta$, using the first equality and the chain rule.