Math 334 Sample Problems

One side of one notebook sized page of notes will be allowed on the test. You may work together on the sample problems – I encourage you to do that. The test will cover up to $\S3.2$.

1. Suppose that (x_0, y_0, z_0, u_0) satisfies the equations

$$x + y + z = F(u)$$

$$x2 + y2 + z2 = G(u)$$

$$x3 + y3 + z3 = H(u),$$

where, F, G, H are C^1 in a neighborhood of u_0 . State a sufficient condition for being able to solve these equations for x, y, z as C^1 functions of u in a neighborhood of (x_0, y_0, z_0, u_0) .

- 2. Is the set $\{(x,y) : y^2 + x^2 e^y = 0\}$ a smooth curve? Is the set $\{(a \cos t, b \sin t) : t \in (0,\pi)\}$, where a > 0, b > 0 a smooth curve?
- 3. Expand $(1 x + 2y)^3$ in powers of x 1 and y 2 in two different ways. The first way is by using algebra and the second way is by computing the Taylor series.
- 4. Using the method of Lagrange multipliers, find the highest and lowest points of the circle

$$x^{2} + y^{2} + z^{2} = 16, \ (x+1)^{2} + (y+1)^{2} + (z+1)^{2} = 27$$

- 5. Show that the surface $z = 3x^2 2xy + 2y^2$ lies entirely above every one of its tangent planes. Hint: Look at the Taylor expansion at every point.
- 6. Let a > 0, b > 0 and a + b = 1. Also let x > 0, y > 0. prove that

$$x^a y^b \le ax + by,$$

by using the method of Lagrange multipliers applied to maximize $x^a y^b$ subject to ax + by = c, where c > 0 is some constant.

7. Let $f(x,y) = x^2(1+y)^3 + 7y^2$ define a function on \mathbb{R}^2 . Find and classify its critical points. What is $\sup\{f(x,y): (x,y) \in \mathbb{R}^2\}$? What is $\inf\{f(x,y): (x,y) \in \mathbb{R}^2\}$?

Sample Problems

- 8. Let $f(x, y) = \sec(x + y^2)$. Find the first two non-zero terms in the Taylor series of $\cos x$, centered at 0. Use it to find the first two non-zero terms of the Taylor series of $\sec x$ centered at 0. Then use that series to find the first two non-zero terms of f at (0, 0).
- 9. Define $f(x) = (\log x)^{\log x}$, for x > 1. Using the chain rule, compute f'(x).
- 10. Folland, $\S2.9$, problem 16.
- 11. Suppose F(x, y) is a C^2 function that satisfies the equations F(x, y) = F(y, x), F(x, x) = x. Prove that the quadratic term in the Taylor polynomial of F based at the point (a, a) is $\frac{1}{2}F_{xx}(a, a)(x-y)^2$.
- 12. There may be homework problems or example problems from the text or lectures on the midterm.
- 13. The following topics have been covered since the first midterm:
 - (a) Higher order partials and equality of mixed partials.
 - (b) Taylor's theorem in one and several variables with Lagrange's form of the remainder.
 - (c) Behavior near critical points second derivative test for extrema in the case of two variables.
 - (d) Max-min problems with constraints. The method of Lagrange multipliers.
 - (e) Implicit Function Theorem.
 - (f) Smooth curves,