EXERCISES

- 1. For each of the following sets S in the plane \mathbb{R}^2 , do the following: (i) Draw a sketch of S. (ii) Tell whether S is open, closed, or neither. (iii) Describe S^{int} , \overline{S} , and ∂S . (These descriptions should be in the same set-theoretic language as the description of S itself given here.)
 - a. $S = \{(x, y) : 0 < x^2 + y^2 \le 4\}.$
 - b. $S = \{(x, y) : x^2 x \le y \le 0\}.$
 - c. $S = \{(x, y) : x > 0, y > 0, \text{ and } x + y > 1\}.$
 - d. $S = \{(x, y) : y = x^3\}.$
 - e. $S = \{(x, y) : x > 0 \text{ and } y = \sin(1/x)\}.$
 - f. $S = \{(x,y) : x^2 + y^2 < 1\} \setminus \{(x,0) : x < 0\}.$
 - g. $S = \{(x, y) : x \text{ and } y \text{ are rational numbers in } [0, 1] \}$.
- 2. Show that for any $S \subset \mathbb{R}^n$, S^{int} is open and ∂S and \overline{S} are both closed. (*Hint:* Use the fact that balls are open, proved in Example 1.)
- 3. Show that if S_1 and S_2 are open, so are $S_1 \cup S_2$ and $S_1 \cap S_2$.
- 4. Show that if S_1 and S_2 are closed, so are $S_1 \cup S_2$ and $S_1 \cap S_2$. (One way is to use Exercise 3 and Proposition 1.4b.)
- 5.) Show that the boundary of S is the intersection of the closures of S and S^c .
- 6. Give an example of an infinite collection S_1, S_2, \ldots of closed sets whose union $\bigcup_{j=1}^{\infty} S_j$ is not closed.
- 7. There are precisely two subsets of \mathbb{R}^n that are both open and closed. What are they?
- 8. Give an example of a set S such that the interior of S is unequal to the interior of the closure of S.
- 9. Show that the ball of radius r about a is contained in the ball of radius $r + |\mathbf{a}|$ about the origin. Conclude that a set $S \subset \mathbb{R}^n$ is bounded if it is contained in some ball (whose center can be anywhere in \mathbb{R}^n).

1.3 Limits and Continuity

We now commence our study of functions defined on \mathbb{R}^n or subsets of \mathbb{R}^n . For the most part we shall be dealing with real-valued functions, but in many situations we shall deal with vector-valued or complex-valued functions, that is, functions whose values lie in \mathbb{R}^k or \mathbb{C} . For our present purposes we can regard \mathbb{C} as \mathbb{R}^2 by identifying the complex number u+iv with the ordered pair (u,v), so it is enough to consider vector-valued functions. But we begin with the real-valued case.

FIGURE 1.1: The geometry of the cross product.

in other words, a × b is orthogonal to both a and b. See Figure 1.1.

The two italicized statements specify the magnitude and direction of $\mathbf{a} \times \mathbf{b}$ in purely geometric terms and show that $\mathbf{a} \times \mathbf{b}$ has an intrinsic geometric meaning, independent o. the choice of coordinate axes. Well, almost: The fact that $\mathbf{a} \times \mathbf{b}$ is orthogonal to both a and b specifies its direction only up to a factor of ± 1 , and this last bit of information is provided by the "right hand rule": If you point the thumb and first finger of your right hand in the directions of a and b, respectively, and bend the middle finger so that it is perpendicular to both of them, the middle finger points in the direction of $\mathbf{a} \times \mathbf{b}$. Thus the definition of cross product is tied to the convention of using "right-handed" coordinate systems. If we were to switch to "left-handed" ones, all cross products would be multiplied by -1.

EXERCISES

- 1. Let x = (3, -1, -1, 1) and y = (-2, 2, 1, 0). Compute the norms of x and y and the angle between them.
- 2. Given $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, show that
 - a. $|\mathbf{x} + \mathbf{y}|^2 = |\mathbf{x}|^2 + 2\mathbf{x} \cdot \mathbf{y} + |\mathbf{y}|^2$.
 - b. $|\mathbf{x} + \mathbf{y}|^2 + |\mathbf{x} \mathbf{y}|^2 = 2(|\mathbf{x}|^2 + |\mathbf{y}|^2)$.
- 3. Suppose $\mathbf{x}_1, \dots, \mathbf{x}_k \in \mathbb{R}^n$.
 - a. Generalize Exercise 2a to obtain a formula for $|\mathbf{x}_1 + \cdots + \mathbf{x}_k|^2$.
 - b. (The Pythagorean Theorem) Suppose the vectors \mathbf{x}_j are mutually orthogonal, i.e., that $\mathbf{x}_i \cdot \mathbf{x}_j = 0$ for $i \neq j$. Show that $|\mathbf{x}_1 + \cdots + \mathbf{x}_k|^2 = |\mathbf{x}_1|^2 + \cdots + |\mathbf{x}_k|^2$.
- 4. Under what conditions on a and b is Cauchy's inequality an equality? (Examine the proof.)
- 5. Under what conditions on a and b is the triangle inequality an equality?

- 6. Show that $||\mathbf{a}| |\mathbf{b}|| \le |\mathbf{a} \mathbf{b}|$ for every $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$.
- 7. Suppose $a, b \in \mathbb{R}^3$.
 - a. Show that if $\mathbf{a} \cdot \mathbf{b} = 0$ and $\mathbf{a} \times \mathbf{b} = \mathbf{0}$, then either $\mathbf{a} = \mathbf{0}$ or $\mathbf{b} = \mathbf{0}$.
 - b. Show that if $\mathbf{a} \cdot \mathbf{c} = \mathbf{b} \cdot \mathbf{c}$ and $\mathbf{a} \times \mathbf{c} = \mathbf{b} \times \mathbf{c}$ for some nonzero $\mathbf{c} \in \mathbb{R}^3$, then $\mathbf{a} = \mathbf{b}$.
 - c. Show that $(\mathbf{a} \times \mathbf{a}) \times \mathbf{b} = \mathbf{a} \times (\mathbf{a} \times \mathbf{b})$ if and only if \mathbf{a} and \mathbf{b} are proportional (i.e., one is a scalar multiple of the other).
- 8. Show that $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$ is the determinant of the matrix whose rows are \mathbf{a} , \mathbf{b} , and \mathbf{c} (if these vectors are considered as row vectors) or the matrix whose columns are \mathbf{a} , \mathbf{b} , and \mathbf{c} (if they are considered as column vectors).

1.2 Subsets of Euclidean Space

In this section we introduce some standard terminology for sets in \mathbb{R}^n .

First, the set of all points whose distance from a fixed point a is equal to some number r is called the **sphere** of radius r about a, and the set of points whose distance from a is less than r is called the (open) ball of radius r about a. (In ordinary English the word "sphere" is often used for both these purposes, but mathematicians have found it helpful to reserve the word "sphere" for the spherical *surface* and to use "ball" to denote the solid body.) We shall use the notation B(r, a) for the ball of radius r about a:

$$B(r, \mathbf{a}) = \{ \mathbf{x} \in \mathbb{R}^n : |\mathbf{x} - \mathbf{a}| < r \}.$$

Of course, when in dimension 1, a ball is just an open interval, and in dimension 2, the words "disc" and "circle" may be used in place of "ball" and "sphere."

A set $S \subset \mathbb{R}^n$ is called **bounded** if it is contained in some ball about the origin, that is, if there is a constant C such that |x| < C for every $x \in S$.

When one studies functions of a single variable, one frequently considers *intervals* in the real line, and it is often necessary to distinguish between *open* intervals (with the endpoints excluded) and *closed* intervals (with the endpoints included). When n > 1, there is a much greater variety of interesting subsets of \mathbb{R}^n to be considered, but the notions of "open" and "closed" are still fundamental. Here are the definitions.

Let S be a subset of \mathbb{R}^n .

• The complement of S is the set of all points in \mathbb{R}^n that are *not* in S; we denote it by $\mathbb{R}^n \setminus S$ or by S^c :

$$S^c = \mathbb{R}^n \setminus S = \left\{ \mathbf{x} \in \mathbb{R}^n : \mathbf{x} \notin S \right\}.$$

n of a × b in tric meaning, ct that a × b or of ±1, and you point the respectively, 1, the middle roduct is tied ere to switch

s of x and y

2. ally orthog-+ $x_k|^2 =$

ty? (Exam-

lity?