Chapter 1. Setting the Stage

EXERCISES

1.

2.

3
4.

For each of the following sets § in the plane R?, do the following: (i) Draw a
sketch of S. (ii) Tell whether § is open, closed, or neither. (iii) Describe Sint,
S, and 3S. (These descriptions should be in the same set-theoretic language as
the description of S itself given here.)

S={(z,y):0<2? + 3% < 4}.

S={(z,y):a* -z <y <0}
S={{z,y):2>0,y>0,andz +y > 1}.

S={(z,y) : y =2°}.

S={(z,y) : z > 0and y = sin(1/z)}.

S={(z,y): 22 + y* < 1} \ {(x,0) : = < 0}.

g S = {(z,y) :  and y are rationul numbers in [0, 1]}.

Show that for any S C R", S is open and S and S are both closed. (Hine:
Use the fact that balls are open, proved in Example 1.)

Show that if Sy and S, are open, so are §; U S, and $, N Ss.

Show tha: if S; and S, are closed, so are S; U S, and $; N $». (One way is to
use Exercise 3 and Proposition 1.4b.)
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5./ Show that the boundary of S is the intersection of the closures of S and S¢.

6’
7.

8 )
0

Give an example of an infinite collection S}, S»,... of closed sets whose union
U32, Sj is not closed.

There are precisely two subsets of R" that are both open and closed. What are
they?

Give an example of a set § such that the interior of S is unequal to the interior
of the closure of S.

Show that the ball of radius = about a is contained in the ball of radius r + la|
about the origin. Conclude that a set § C R" is bounded if it is contained in
some ball (whose center can be anywhere in R").

1.3 Limits and Continuity

We now commence our study of functions defined on R" or subsets of R*. For
the most part we shall be dealing with real-valued functions, but in many situations
we shall deal with vector-valued or complex-valued functions, that is, functions
whose values lie in R* or C. For our present purposes we can regard C as R? by
identifying the complex number « + iv with the ordered pair (u, v), so it is enough
to consider vector-valued functions. But we begin with the real-valued case.
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FIGURE 1.1: The geometry of the cross product.

in other words, a x b is orthogonal to both a and b, See Figure 1.1.

The two italicized statements specify the magnitude and direction of a x b in
purely geometric terms and show that a x b has an intrinsic geometric meaning,
independent o. the choice of coordinate axes. Well, almost: The fact thata x b
is orthogonal to both a and b specifies its direction only up to a factor of +1, and
this last bit of information is provided by the “right hand rule": If you point the
thumb and first finger of your right hand in the directions of aand b, respectively,
and bend the middle finger so that it is perpendicular to both of them, the middle
finger points in the direction of a x b. Thus the definition of cross product is tied
to the convention of using “right-handed” coordinate systems. If we were to switch
to “left-handed” ones, all cross products would be multiplied by —1,

EXERCISES

L. Letx = (3, -1, -L1)andy = (-2, 2,1,0). Compute the norms of x and y
and the angle between them,
2. Given x,y € R, show that
A |x+y?=|x2+2x.y+ lyl>.
b I+ yI2 + x - % = 2(|x[? + |y[2).
3. Suppose x;,... ' Xp ER®,

a. Generalize Exercise 2a to obtain a formula for |x; + ... + xk/2.

b. (The Pythagorean Theorem) Suppose the vectors x; are mutually orthog-
onal, ie., that x; - x; = 0 for ; # Jj. Show that [x; + ... + xk|? =
le|2 +--- 4 lxklz.

4. Under what conditions on a and b is Cauchy’s inequality an equality? (Exam-
ine the proof.)

5. Under what conditions on a and b is the triangle inequality an equality?
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1.2. Subsets of Euclidean Space 9

6.' Show that | |a| — |b| | < |a - b| for every a,b € R".
7. Suppose a,b € R3,
a. Showthatifa-b=0anda xb =0, theneithera=00rb =0.
b. Show thatifa-c = b-canda x ¢ = b x ¢ for some nonzero ¢ € R,
thena =b.
c. Show that (axa)xb = ax (axb) if and only if a and b are proportional
(i.e., one is a scalar multiple of the other).
8. Show that a- (b x c) is the determinant of the matrix whose rows are a, b, and
c (if these vectors are considered as row vectors) or the matrix whose columns
are a, b, and c (if they are considered as column vectors).

1.2 Subsets of Euclidean Space

In this section we introduce some standard terminology for sets in R".

First, :he set of all points whose distance from a fixed point a is equal to some
number r 15 called the sphere of radius r about a, and the set of points whose dis-
tance from a is less than r is called the (open) ball of radius 7 about a. (In ordinary
English the word “sphere” is often used for both these purposes, but mathemati-
cians have found it helpful to reserve the word “sphere™ for the spherical surface
and to use “ball” to denote the solid body.) We shall use the notation B(r, a) for
the ball of radius r about a:

B(r,a)={x€eR":|x-a| <r}.

Of course, when in dimension 1, a ball is just an open interval, and in dimension 2,
the words “disc” and “circle” may be used in place of *“ball” and *sphere.”

A set S C R" is called bounded if it is contained in some ball about the origin,
that is, if there is a constant C such that |x| < C forevery x € S.

When one studies functions of a single variable, one frequently considers inter-
vals in the real line, and it is often necessary to distinguish between open intervals
(with the endpoints excluded) and closed intervals (with the endpoints included).
When n > 1, there is a much greater variety of interesting subsets of R” to be
considered, but the notions of “open” and “closed” are still fundamental. Here are
the definitions.

Let S be a subset of &".

e The complement of S is the set of all points in R" that are nor in S; we
denote it by R" \ S or by S¢:

SC=R"\S={xeR":x¢ S}



