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Since that ancient time when Zeno first sent Achilles chasing after the tortoise,
infinite series have been a source of wonder and amusement because they can be
manipulated to appear to contradict our understanding of numbers and nature.

Zeno’s paradoxes still intrigue and baffle us even though the fallacies in his arguments
have long since been identified.

Mathematicians of the late seventeenth and eighteenth centuries were often puzzled by
the results they would get while working with infinite series. By the nineteenth century
it had become apparent that divergent series were often the cause of the difficulties.
“Divergent series are the invention of the devil,” Neils Hendrik Abel wrote in a letter to
a friend in 1826. “By using them, one may draw any conclusion he pleases, and that is
why these series have produced so many fallacies and so many paradoxes” (Kline 1972).

As an example of what can go wrong, suppose we letS represent the sum of the
alternating harmonic series, that is

See figure 1. What’s wrong here? (This series, by the way, is not divergent. Its sum is 
ln 2, which is easy to determine. Find the Taylor series of and let x equal 1.) 
It seems that although we merely rearranged the terms of an infinite series (equations 3
and 4), its sum has changed from 2S to S! 
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Fig. 1 

In 1827,Peter Lejeune-Dirichlet discovered this surprising result while working on
conditions that ensured the convergence of Fourier series. He was the first to notice that
it is possible to rearrange the terms of certain series (now known as conditionally
convergent series) so that the sum would change. Why is this result possible? Dirichlet
was never able to give an answer. (In a paper published in 1837,he did prove that
rearranging the terms of an absolutely convergent series does not alter its sum.) With the
discovery that the sum of a series could be changed, Dirichlet had found the path to
follow to prove the convergence of Fourier series. By 1829 he had succeeded in solving
one of the preeminent problems of that time.

In 1852,Bernhard Riemann began work on a paper extending Dirichlet’s results on the
convergence of Fourier series. Riemann sought Dirichlet’s advice and showed him a
draft of this work. Dirichlet reminisced about his work on the problem and related his
discovery that rearranging the terms of a conditionally convergent series could alter its
sum. Riemann suspected that divergent series were somehow responsible. He soon
found a remarkable explanation that accounted for this bizarre behavior, now known as
Riemann’s rearrangement theorem,which he incorporated in his paper on Fourier series.
Although the paper was completed by the end of 1853,it was not published until after
his death in 1866 under the title “On the Representation of a Function by a
Trigonometric Series.”

To get at Riemann’s theorem we will use the definition of the sum of an infinite series
and seven theorems that are part of a standard first course on infinite series. We will also
need to distinguish between two types of convergent series.
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Write out a few terms:

(1)

Multiply both sides by 2:

(2)
Collect terms with the same denominator, as the arrows indicate:

(3)

We arrive at this:

(4)

We see that on the right side of this equation, we have the same series we
started with. In other words,by combining equations 1 and 4,we obtain
(5)
Divide by S. We have shown that
(4) 2 5 1.
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The Sum of an Infinite Series
When confronting an infinite series for the first time, students are usually
puzzled by what is meant by its sum. For instance, when considering the
geometric series

(1)

students often challenge the claim that the sum of this series is 1. “That series doesn’t
add up to 1,” they often say. “Take any number of terms,say the first
trillion, add them up,and you’re not going to get 1. No matter how many terms you add
on, the sum never reaches 1.”

The observation is correct; the conclusion is wrong. What they don’t notice is that they
haven’t added all the terms! Those weren’t infinite series they were adding. Those were
finite series. Before we can expect to obtain 1 as the sum,we need to add all the terms.
The question is,How can we do so? How can we add an infinite number of terms? The
answer is we don’t directly add all the terms. Instead we look for a method that will
allow us to see what number (if any) we would get if we were somehow able to perform
the impossible task of adding up all the terms. In our search for the sum of the
geometric series in (1),we look at the nth partial sum,

as 

We see that

and so on. The nth partial sum is

As we add on more and more terms as n approaches infinity, the partial sums get closer
and closer to 1. It seems that if we could somehow add on all the remaining terms,we
would get 1 as the sum. So it appears that a plausible sum for this geometric series
would be the limit of its nth partial sum as n approaches infinity,
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Therefore, it seems natural to define the sum of an infinite series as follows:

Definition. If the limit of the nth partial sum of the infinite series exists and
equals S, then we say converges and its sum is S. If, as n approaches infinity, the
limit of the nth partial sum does not exist, then we say the series diverges and
has no sum.

Convergence Tests
We were able to determine that the geometric series converges by examining its nth
partial sum. However, as it turns out,a formula for the nth partial sum of most infinite
series cannot be found. Augustin-Louis Cauchy, as well as Abel and Dirichlet, realized
this difficulty and was among the first to devise a number of theorems or tests to
determine the convergence of a series. Seven theorems on convergent and divergent
series follow. Their proofs are relatively simple and rely heavily, as one would expect,
on the definition of the sum of an infinite series. The proofs of these theorems can be
found in practically any first-year calculus text.

Theorem 1.The sum of two convergent series is a convergent series. If and
then

Theorem 2.The sum of a convergent series and a divergent series is a divergent series.

Theorem 3. and both converge or both diverge. (In other words,the first

finite number of terms do not determine the convergence of a series.)

Theorem 4.If the series converges,then 

Theorem 5.If converges,then converges.

Theorem 6.The comparison test. If the series and have only positive terms
with for all and

(1) if converges,then converges;

(2) if diverges,then diverges.

Theorem 7.Leibniz’alternating series test. The alternating series 
converges if the sequence is monotone decreasing to 0. HanJ
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The Harmonic Series

Theorem 4 says that it is necessary for the terms of a series to approach 0 if the series is
to converge. But is this a sufficient condition for a series to converge? The answer to this
question is supplied by a rather famous counterexample, the harmonic series 
The fact that the terms of the harmonic series going to 0 does not prevent the series from
diverging can be shown by using the comparison test (Cauchy’s integral test,which is
another form of the comparison test,would provide an alternate method of proof). The
terms of can be grouped (not rearranged) as in figure 2.

Clearly each group sectioned off in the harmonic series is greater than So,in effect,
we are summing a series in which every term is at least thus the nth partial sum 
increases without bound, and the harmonic series must diverge. The divergence happens
very slowly—approximately terms must be added before exceeds 10,and
approximately terms are needed before exceeds 20. 

Fig. 2

The alternating harmonic series

is a different story. The absolute value of the terms of this series are monotonic
decreasing to 0. By an argument made famous by Leibniz (the alternating-series test),
we can conclude that the alternating harmonic series converges.

So we see that although the alternating harmonic series converges,the series obtained by
replacing each term by its absolute value diverges. This result shows that the
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o 
s21dn21

n 

Sn229
Sn215

Sn1y2;
1y2.

o s1ynd

o s1ynd.

5

2 terms terms terms
each each each

1 . . .1
1
21

1
2

1
25 1 1

1
2 1

>  1 1
1
2 1 s1

4 1
1
4d 1 s1

8 1
1
8 1

1
8 1

1
8d 1 s 1

16 1 . . . 1
1
16d 1 . . .

  ≥  1y16  ≥  1y8  ≥  1y4
2322

o 1n 5 1 1
1
2 1 s1

3 1
1
4d 1 s1

5 1
1
6 1

1
7 1

1
8d 1 s1

9 1 . . . 1
1

16d 1 . . .



Two Types of Infinite Series

Considering the harmonic series,the alternating harmonic series,and theorem 5,we are
led naturally to define two types of infinite series. A series  is called absolutely
convergent if  converges. A series is called conditionally convergent if  
converges but  diverges.

Is the alternating harmonic series an absolutely or conditionally convergent series? If we
take the absolute value of all the terms,we get the harmonic series,which, as we have
seen,diverges. So the alternating harmonic series is a conditionally convergent series.

However, the series

is an absolutely convergent series,since when we take the absolute value of all its terms
we get and this series is known to converge. We can show that  
converges by the comparison test. (Once again,Cauchy’s integral test could be used
instead.)

is term by term less than

(2)

for all If we can show that (2) converges,then since it dominates we
can conclude that converges:

(from writing out a few of the first and last terms)

(We see that the finite series telescopes.)

Since (2) converges,it follows that converges. To summarize,
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is conditionally convergent because

diverges.

is absolutely convergent because

converges.

This conclusion brings us to Riemann’s rearrangement theorem,which will be presented
in two parts.

Riemann’s Rearrangement Theorem—Part 1
In a conditionally convergent series,the sum of the positive terms is a divergent series
and the sum of the negative terms is a divergent series.

Proof. First we notice that a conditionally convergent series must have positive and
negative terms. If all its terms were positive or all were negative, it would be an
absolutely convergent series. For example, if and all the terms were
negative, then would converge to 1 and would be an absolutely convergent
series.

In fact,conditionally convergent series must have an infinite number of positive and
negative terms. If has only a finite number of negative terms,then the remaining
series of positive terms must converge, since by theorem 3 the first finite number of
terms do not count when we determine the convergence or divergence of an infinite
series. This result would mean that is an absolutely convergent series.

So we take a conditionally convergent series  and separate it into two infinite
series,one of all the positive terms and the other of all the negative terms,and represent
these series by and respectively. So that we can successfully recover the
original series without rearranging terms by writing we define
the terms and as follows:
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For instance, for the series

and

So

For the convergence of and  four possibilities exist:

Case 1: converges and converges.

Case 2: converges and diverges.

Case 3: diverges and converges.

Case 4: diverges and diverges. 

Using the definitions of absolutely and conditionally convergent series,Riemann showed
that cases 1,2, and 3 are impossible and that, hence, case 4 follows.

Here is how he did it. We can’t have case 1,for suppose

and

with Then

In this case, since

is the sum of two convergent series. Therefore by theorem 1, must
converge to This result means that would be an absolutely convergent
series,not conditionally convergent as required. 
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We can’t have case 2,because if we add both the convergent series and the
divergent series the resulting series will diverge, since by theorem 2 the sum
of a convergent series and a divergent series is a divergent series. But we know that 
is conditionally convergent and hence must converge.

For example, if

and diverges to then it would follow that diverges to but  
must converge because it is given to be a conditionally convergent series.

Case 3 is essentially the same as case 2. Therefore, we must have case 4, and
are both divergent series for a conditionally convergent series. The divergence of

the two series is the key idea in proving the second part of Riemann’s rearrangement
theorem. It offers an insight as to why the sum of a conditionally convergent series can
be changed by rearranging terms. In fact,as we will now see, the terms can be
rearranged to add up to any number we wish! 

Riemann’s Rearrangement Theorem—Part 2

Let be a conditionally convergent series,and let S be a given real number. Then a
rearrangement of the terms of exists that converges to S.

Proof. We wish to show we can rearrange the terms of to form a series whose sum
is S.

Add together, in order, just enough of the first positive terms of so that their sum
exceeds S. Say we need terms to do so,then the partial sum We can always
do so no matter how large S is, since the series of positive terms diverges to infinity.

To this sum add, in order, just enough of the first negative terms of to make the
resulting sum less than S. Say we need negative terms,then the partial sum

We can always do so no matter how far the positive terms took us to the right of S, since
the series of negative terms diverges to negative infinity. 

Now add just enough of the next positive terms,say positive terms,to get the sum to
exceedS again. We now have the partial sum

Now again add just enough of the next negative terms,say negative terms,so that the
sum is less thanS again. We now have the partial sum

We continue to repeat this process,adding each time just enough new positive terms to
make the sum exceedS and then just enough new negative terms to make the sum less
than S.
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Now we notice that all these partial sums differ from S by, at most,one positive or one
negative term. These partial sums must be closing in on S—since the original series 
converges,its terms go to 0 as n goes to infinity. We can get the partial sums as close
to S as we wish (within any epsilon),if we go out far enough in the series (to where all
the remaining terms have their absolute values less than epsilon). So the partial sums
converge to S, which proves that the series of rearranged terms converges to S.

It should be pointed out that a rearrangement need not be constructed in the manner just
described. Rearrangements are not unique. For instance, suppose we wish the sum of a
conditionally convergent series to be 10. We could add the first positive terms to a
million or a billion and be completely confident that we could add on negative terms and
get back to 10,since the series of negative terms diverges. If we somehow lost track of
what we were doing and continued to add on negative terms to we
need not worry because at any time, we can begin to add on positive terms and get the
partial sums back to within any range of 10 that we wish. We can swing back and forth
to numbers larger than we have ever imagined, just as long as we eventually decide to
bring the partial sums back to oscillate around 10.

We can also rearrange the terms of any conditionally convergent series so that it will
diverge. One such rearrangement is to pick positive terms to add to a million,then add
on one negative term, then add on positive terms to reach a trillion, then add on another
negative term, then add positive terms till we are beyond a googolplex, then add on a
negative term . . . .

That’s Riemann’s rearrangement theorem. It’s really a grand counterexample to to the
seemingly plausible idea that we can rearrange the terms of any infinite series and be
sure that we will not alter its sum.

The proof of Riemann’s theorem offers a model for getting partial sums within an
epsilon of the sum of an infinite series and uses the idea that the terms of a convergent
series must go to 0,along with other basic theorems of a first course. The theorem gives
students a deeper understanding of infinite series and can easily be proved to an
Advanced Placement class without sacrif icing the teaching of other material.

The final point to be made here is that Riemann’s rearrangement theorem is a
counterexample that surprises and even startles us. It challenges our conceptions in an
interesting way. Seeing what can go wrong is often an indispensable way to gain insight
and intuition into the foundations of calculus. 
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