Abel's Test

February 9, 2011

This note is an exposition of Abel's test on convergence of series.
Theorem 1. Suppose $\sum_{1}^{\infty} b_{n}$ converges and that $\left\{a_{n}\right\}$ is a monotone bounded sequence. Then $\sum_{1}^{\infty} a_{n} b_{n}$ converges.

Proof. Let $b_{0}=0, B_{N}=\sum_{k=0}^{N} b_{k}$. Then $b_{n}=B_{n}-B_{n-1}, n \geq 1$, hence

$$
\begin{aligned}
\sum_{k=1}^{N} a_{k} b_{k} & =\sum_{k=1}^{N} a_{k}\left(B_{k}-B_{k-1}\right) \\
& =B_{1}\left(a_{1}-a_{2}\right)+B_{2}\left(a_{2}-a_{3}\right)+\ldots B_{N-1}\left(a_{N-1}-a_{N}\right)+a_{N} B_{N} \\
& =\sum B_{k}\left(a_{k}-a_{k+1}\right)+a_{N} B_{N}
\end{aligned}
$$

Since $\left\{a_{n}\right\}$ is monotone and bounded it converges; and $\left\{B_{N}\right\}$ converges since $\sum b_{n}$ converges. Hence $a_{N} B_{N}$ converges. We estimate $\sum B_{k}\left(a_{k}-a_{k+1}\right)$. Since $\sum b_{n}$ converges, $\left|\sum b_{n}\right| \leq M$ for some M. Using the fact that $\left\{a_{n}\right\}$ is montone we get $\sum_{1}^{N} \mid B_{k}\left(a_{k}-a_{k+1}\left|\leq M \sum_{1}^{N}\right| a_{k}-a_{k+1}|=M| a_{1}-a_{N+1}|\rightarrow M| a_{1}-a \mid\right.$, where $a_{k} \rightarrow a$. Hence $\sum B_{k}\left(a_{k}-a_{k+1}\right.$ converges absolutely.

Example 1. Suppose $\sum a_{n}$ converges. Then $\sum n^{1 / n} a_{n}$ converges and $\sum(1+1 / n)^{n} a_{n}$ converges.
Proof. It's easy to prove that $f(x)=x^{1 / x}$ is decreasing for $x>e$, by computing the derivative of $(\log (x)) / x$. Here is the proof that $(1+1 / n)^{n}$ increases with n.

$$
\begin{aligned}
(1+1 / n)^{n} & =1+1+\cdots+\binom{n}{p} \frac{1}{n^{p}}+\cdots+\frac{1}{n^{n}} \\
& =1+\cdots+(1-1 / n) \cdots(1-(p-1) / n) \frac{1}{p!}+\cdots+\frac{1}{n^{n}} \\
(1+1 /(n+1))^{n+1} & =1+\cdots+(1-1 /(n+1)) \cdots(1-(p-1) /(n+1)) \frac{1}{p!}+\cdots+\frac{1}{(n+1)^{n+1}} .
\end{aligned}
$$

The last sum has one more (positive) term than the preceding term and the p th term of the last sum is larger than the preceding p th term since each factor is larger (subtract $k /(n+1)$ from 1 as opposed to subtracting $k / n)$. Hence

$$
\left(1+\frac{1}{n+1}\right)^{n+1}>\left(1+\frac{1}{n}\right) .
$$

It's easy check using L'Hopital's rule that $(1+1 / x)^{x} \rightarrow e$ as $x \rightarrow \infty$, so the sequence $(1+1 / n)^{n}$ is monotone and bounded.

