Abel's Theorem on Fourier Series

March 2, 2011

Abel's theorem allows us to conclude that if the Fourier coefficients $\hat{f}(n)=c_{n}$ are known and f is piecewise continuous then f is determined.

Definition 1. Let $0<r<1$ and define

$$
A_{r} f(x)=\sum_{-\infty}^{+\infty} c_{n} r^{|n|} e^{i n x}
$$

This series converges absolutely and uniformly in x to a continuous function of x for each $r<1$.
Theorem 1. If f is piecewise continuous

$$
\lim _{r \rightarrow 1^{-}} A_{r} f(x)=\frac{1}{2}\left[f\left(x^{+}\right)+f\left(x^{-}\right)\right] .
$$

If f is continuous, given an ϵ, there is a δ so that

$$
\left|A_{r} f(x)-f(x)\right|<\epsilon
$$

for all r such that $|r-1|<\delta$. We say $A_{r} f$ converges uniformly in x to f.
Proof. Let $P_{r}(t)=\frac{1}{2 \pi} \sum_{-\infty}^{+\infty} r^{|n|} e^{i n t}$. Let $z=r e^{i t}$. Then

$$
\begin{aligned}
P_{r}(x) & =\frac{1}{2 \pi}\left[\frac{1}{1-z}+\frac{\bar{z}}{1-\bar{z}}\right] \\
& =\frac{1}{2 \pi}\left[\frac{1-|z|^{2}}{|1-z|^{2}}\right] \\
& =\frac{1}{2 \pi}\left[\frac{1-r^{2}}{1+r^{2}-2 r \cos (t)}\right], \text { and } \\
& =\frac{1}{2 \pi}\left[1+\sum_{n=1}^{\infty} 2 r^{n} \cos (n t)\right]
\end{aligned}
$$

Integrating the last series term-by-term with respect to t we get

$$
\int_{0}^{\pi} P_{r}(t) d t=\int_{-\pi}^{0} P_{r}(t) d t=\frac{1}{2} .
$$

Now let $\delta>0$ and suppose $\delta \leq t \leq \pi$. By calculus we find that the minimum of $1+r^{2}-2 r \cos (t)$ on this interval is $1+r^{2}-2 r \cos (\delta)$. Hence on $\delta \leq t \leq \pi$

$$
\begin{equation*}
0<P_{r}(t) \leq \frac{1}{2 \pi}\left[\frac{1-r^{2}}{1+r^{2}-2 r \cos (\delta)}\right] \tag{1}
\end{equation*}
$$

Let us change variables and use periodicity, as in Dirichlet's theorem to write

$$
A_{r} f\left(x_{0}\right)=\int_{-\pi}^{\pi} f\left(x_{0}+t\right) P_{r}(t) d t
$$

Fix x_{0} and choose δ so that $\left|f\left(x_{0}+t\right)-f\left(x_{0}^{-}\right)\right| \leq \epsilon$ if $-\delta \leq t<0$ and $\left|f\left(x_{0}+t\right)-f\left(x_{0}^{+}\right)\right| \leq \epsilon$ if $0<t \leq \delta$. Now that δ has been chosen, pick μ so that $0 \leq P_{r}(t)<\epsilon$ if $0<1-r<\mu$ when $\delta \leq|t| \leq \pi$, which we can do by (1). Then

$$
\begin{aligned}
A_{r} f\left(x_{0}\right)-\frac{1}{2}\left[f\left(x^{+}\right)+f\left(x^{-}\right)\right. & =\int_{-\pi}^{-\delta}\left[f\left(x_{0}+t\right)-f\left(x_{0}^{-}\right)\right] P_{r}(t) d t+\int_{-\delta}^{0}\left[f\left(x_{0}+t\right)-f\left(x_{0}^{-}\right)\right] P_{r}(t) d t \\
& +\int_{0}^{\delta}\left[f\left(x_{0}+t\right)-f\left(x_{0}^{-}\right)\right] P_{r}(t) d t+\int_{\delta}^{\pi}\left[f\left(x_{0}+t\right)-f\left(x_{0}^{-}\right)\right] P_{r}(t) d t \\
& =I+I I+I I I+I V .
\end{aligned}
$$

We'll first estimate $I I I$. The estimate on $I I$ is similar.

$$
|I I I| \leq \epsilon \int_{0}^{\delta} P_{r}(t) d t \leq \epsilon \int_{0}^{\pi} P_{r}(t) d t=\frac{\epsilon}{2} .
$$

Next we estimate I ($I V$ is similar).

$$
|I| \leq\left|\int_{-\pi}^{-\delta}\left[f\left(x_{0}+t\right)-f\left(x_{0}^{-}\right)\right] P_{r}(t) d t\right| \leq 2 M|\pi-\delta| \epsilon \leq 2 \pi M \epsilon,
$$

where $|f| \leq M$. So altogether we get

$$
\left\lvert\, A_{r} f\left(x_{0}\right)-\frac{1}{2}\left[f\left(x^{+}\right)+f\left(x^{-}\right) \mid \leq \epsilon+4 \pi M \epsilon\right.\right.
$$

when $0<1-r<\mu$. This proves the first statement. The δ chosen depends on x_{0} and hence μ depends on x_{0}. But if f is continuous on $[-\pi, \pi]$ it is uniformly continuous, so δ can be chosen independent of x_{0} and then μ does not depend on $x_{0} . A_{r} f(x)$ is uniformly close to $f(x)$ if r is close enough to 1 .

