Abel Theorems

This document will prove two theorems with the name Abel attached to them. Abel proved the result
on series in an 1826 paper. I can find no reference to a paper of Abel in which he proved the result on
Laplace transforms.

Theorem 1. [1] Suppose > q° an converges. Then f(x) =Y ;" ana™ converges for |z| <1 andlim, ;- f(z) =
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Proof. By general theorems on power series f(z) = > apa™ converges for |z| < 1. Let s, = a1 +...an
and let s = limy,,—yoo Sp, = 280 an. Then, by comparison to the geometric series Y s,z™ converges for
|z| <1 and
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Now we choose z close enough to 1 that
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We can do this since (1 —x) Zév (sp, —s)z™ is a polynomial of degree N that vanishes at 1. We are done. [

Let f be a continuous function on [0, 00) that doesn’t grow too fast and is integrable on all intervals
[0,0] (for instance a polynomial). Then the integral

F(s) = /000 e SLf(t)dt

converges and defines a continuous function if s > 0. We don’t need all of this. I am oversimplifying.



Theorem 2. Suppose L = fo t)dt exists. Then
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Proof. Let G(s) = [; f(t)dt. Then integration by parts gives (when s > 0)
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Choose B so that |G(t) — L| < /2 when ¢t > B. And then choose s so that |s fOB e SYG(t) — L)dt| < /2

when s is close to 0. We can do this since s fOB e %' (G(t) — L)dt is continuous and is equal to 0 at s = 0. [

Remark 1. This argument is general.
an — a. Then W — q.

We can use it discuss various methods of summation. Suppose

Proof. Let N be so large that |a, —a| <&/2 if n > N and let n = N + k.

atay+-+a, (a1 —a)+ (a2 —a)+---+ (a0 —a)
n N n
(a1 —a)+(a2—a)+---+(ay—a)  (any1—a)+ -+ (an —a)
= +
N+ k n
(a1 —a)+(ag—a)+---+(ay—a) k
< —e/2
- N+ k +n5/
(ap —a) + (ag —a)+ -+ (ay — a)
< 2.
< Nk +e/
With this fixed N, choose k and hence n so large that the first term is less than /2. O

Corollary 1. Let s, = a1 +---

sin x

Example 1. For the example of [;° %2
(s>0)

+ a,,. Suppose s, — s. Then (Cesaro summation) lim,
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dx, which we know converges, we compute the Laplace transform
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and let s — 0+.
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