Abel Theorems

This document will prove two theorems with the name Abel attached to them. Abel proved the result on series in an 1826 paper. I can find no reference to a paper of Abel in which he proved the result on Laplace transforms.
Theorem 1. [1] Suppose $\sum_{0}^{\infty} a_{n}$ converges. Then $f(x)=\sum_{0}^{\infty} a_{n} x^{n}$ converges for $|x|<1$ and $\lim _{x \rightarrow 1^{-}} f(x)=$ $\sum_{0}^{\infty} a_{n}$.
Proof. By general theorems on power series $f(x)=\sum_{n}^{\infty} a_{n} x^{n}$ converges for $|x|<1$. Let $s_{n}=a_{1}+\ldots a_{n}$ and let $s=\lim _{n \rightarrow \infty} s_{n}=\sum_{0}^{\infty} a_{n}$. Then, by comparison to the geometric series $\sum s_{n} x^{n}$ converges for $|x|<1$ and

$$
f(x)=\sum_{0}^{\infty} a_{n} x^{n}=\sum_{0}^{\infty} s_{n} x^{n}-x \sum_{0}^{\infty} s_{n} x^{n}=(1-x) \sum_{0}^{\infty} s_{n} x^{n}
$$

Then

$$
f(x)-s=(1-x) \sum_{0}^{\infty}\left(s_{n}-s\right) x^{n}
$$

since $\sum x^{n}=\frac{1}{1-x}$.
Now choose N so that if $n \geq N\left|s_{n}-s\right|<\varepsilon / 2$. Then

$$
\begin{aligned}
|f(x)-s| & =\left|(1-x) \sum_{0}^{\infty}\left(s_{n}-s\right) x^{n}\right| \\
& \leq\left|(1-x) \sum_{0}^{N}\left(s_{n}-s\right) x^{n}\right|+\left|(1-x) \sum_{N+1}^{\infty}\left(s_{n}-s\right) x^{n}\right| \\
& \leq\left|(1-x) \sum_{0}^{N}\left(s_{n}-s\right) x^{n}\right|+\varepsilon / 2
\end{aligned}
$$

Now we choose x close enough to 1 that

$$
\left|(1-x) \sum_{0}^{N}\left(s_{n}-s\right) x^{n}\right| \leq \varepsilon / 2
$$

We can do this since $(1-x) \sum_{0}^{N}\left(s_{n}-s\right) x^{n}$ is a polynomial of degree N that vanishes at 1 . We are done.
Let f be a continuous function on $[0, \infty)$ that doesn't grow too fast and is integrable on all intervals $[0, b]$ (for instance a polynomial). Then the integral

$$
F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

converges and defines a continuous function if $s>0$. We don't need all of this. I am oversimplifying.

Theorem 2. Suppose $L=\int_{0}^{\infty} f(t) d t$ exists. Then

$$
\lim _{s \rightarrow 0} F(s)=\lim _{s \rightarrow 0} \int_{0}^{\infty} e^{-s t} f(t) d t=L=\int_{0}^{\infty} f(t) d t
$$

Proof. Let $G(s)=\int_{0}^{s} f(t) d t$. Then integration by parts gives (when $s>0$)

$$
\begin{aligned}
F(s) & =\left.e^{-s t} G(t)\right|_{0} ^{\infty}+s \int_{0}^{\infty} e^{-s t} G(t) d t \\
& =s \int_{0}^{\infty} e^{-s t} G(t) d t .
\end{aligned}
$$

Then

$$
\begin{aligned}
F(s)-L & =s \int_{0}^{\infty} e^{-s t} G(t) d t-s \int_{0}^{\infty} e^{-s t} L d t \\
& =s \int_{0}^{\infty} e^{-s t}(G(t)-L) d t \\
& =s \int_{0}^{B} e^{-s t}(G(t)-L) d t+s \int_{B}^{\infty} e^{-s t}(G(t)-L) d t
\end{aligned}
$$

Choose B so that $|G(t)-L|<\varepsilon / 2$ when $t \geq B$. And then choose s so that $\left|s \int_{0}^{B} e^{-s t}(G(t)-L) d t\right|<\varepsilon / 2$ when s is close to 0 . We can do this since $s \int_{0}^{B} e^{-s t}(G(t)-L) d t$ is continuous and is equal to 0 at $s=0$.

Remark 1. This argument is general. We can use it discuss various methods of summation. Suppose $a_{n} \rightarrow a$. Then $\frac{a_{1}+a_{2}+\cdots+a_{n}}{n} \rightarrow a$.
Proof. Let N be so large that $\left|a_{n}-a\right|<\varepsilon / 2$ if $n \geq N$ and let $n=N+k$.

$$
\begin{aligned}
\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}-a & =\frac{\left(a_{1}-a\right)+\left(a_{2}-a\right)+\cdots+\left(a_{n}-a\right)}{n} \\
& =\frac{\left(a_{1}-a\right)+\left(a_{2}-a\right)+\cdots+\left(a_{N}-a\right)}{N+k}+\frac{\left(a_{N+1}-a\right)+\cdots+\left(a_{n}-a\right)}{n} \\
& \leq \frac{\left(a_{1}-a\right)+\left(a_{2}-a\right)+\cdots+\left(a_{N}-a\right)}{N+k}+\frac{k}{n} \varepsilon / 2 \\
& \leq \frac{\left(a_{1}-a\right)+\left(a_{2}-a\right)+\cdots+\left(a_{N}-a\right)}{N+k}+\varepsilon / 2 .
\end{aligned}
$$

With this fixed N, choose k and hence n so large that the first term is less than $\varepsilon / 2$.
Corollary 1. Let $s_{n}=a_{1}+\cdots+a_{n}$. Suppose $s_{n} \rightarrow s$. Then (Cesaro summation) $\lim _{n \rightarrow \infty} \frac{s_{1}+\cdots+s_{n}}{n} \rightarrow s$.
Example 1. For the example of $\int_{0}^{\infty} \frac{\sin x}{x} d x$, which we know converges, we compute the Laplace transform $(s>0)$

$$
\int_{0}^{\infty} e^{-s t} \frac{\sin t}{t} d t=\arctan \left(\frac{1}{s}\right)
$$

and let $s \rightarrow 0+$.

References

[1] Niels Abel, Untersuchungen uber die Reihe;, pp. 311-339, Theorem IV, Journal fur Math, 1, (1826).

